scholarly journals Comparison among the first representative chloroplast genomes of Orontium, Lasia, Zamioculcas, and Stylochaeton of the plant family Araceae: inverted repeat dynamics are not linked to phylogenetic signaling

2020 ◽  
Author(s):  
Abdullah ◽  
Claudia L. Henriquez ◽  
Furrukh Mehmood ◽  
Iram Shahzadi ◽  
Zain Ali ◽  
...  

AbstractThe chloroplast genome provides insight into the evolution of plant species. We de novo assembled and annotated chloroplast genomes of the first representatives of four genera representing three subfamilies: Lasia spinosa (Lasioideae), Stylochaeton bogneri, Zamioculcas zamiifolia (Zamioculcadoideae), and Orontium aquaticum (Orontioideae), and performed comparative genomics using the plastomes. The size of the chloroplast genomes ranged from 163,770–169,982 bp. These genomes comprise 114 unique genes, including 80 protein-coding, 4 rRNA, and 30 tRNA genes. These genomes exhibited high similarities in codon usage, amino acid frequency, RNA editing sites, and microsatellites. The junctions JSB (IRb/SSC) and JSA (SSC/IRa) are highly variable, as is oligonucleotide repeats content among the genomes. The patterns of inverted repeats contraction and expansion were shown to be homoplasious and therefore unsuitable for phylogenetic analyses. Signatures of positive selection were shown for several genes in S. bogneri. This study is a valuable addition to the evolutionary history of chloroplast genome structure in Araceae.

Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 737 ◽  
Author(s):  
Abdullah ◽  
Claudia L. Henriquez ◽  
Furrukh Mehmood ◽  
Iram Shahzadi ◽  
Zain Ali ◽  
...  

The chloroplast genome provides insight into the evolution of plant species. We de novo assembled and annotated chloroplast genomes of four genera representing three subfamilies of Araceae: Lasia spinosa (Lasioideae), Stylochaeton bogneri, Zamioculcas zamiifolia (Zamioculcadoideae), and Orontium aquaticum (Orontioideae), and performed comparative genomics using these chloroplast genomes. The sizes of the chloroplast genomes ranged from 163,770 bp to 169,982 bp. These genomes comprise 113 unique genes, including 79 protein-coding, 4 rRNA, and 30 tRNA genes. Among these genes, 17–18 genes are duplicated in the inverted repeat (IR) regions, comprising 6–7 protein-coding (including trans-splicing gene rps12), 4 rRNA, and 7 tRNA genes. The total number of genes ranged between 130 and 131. The infA gene was found to be a pseudogene in all four genomes reported here. These genomes exhibited high similarities in codon usage, amino acid frequency, RNA editing sites, and microsatellites. The oligonucleotide repeats and junctions JSB (IRb/SSC) and JSA (SSC/IRa) were highly variable among the genomes. The patterns of IR contraction and expansion were shown to be homoplasious, and therefore unsuitable for phylogenetic analyses. Signatures of positive selection were seen in three genes in S. bogneri, including ycf2, clpP, and rpl36. This study is a valuable addition to the evolutionary history of chloroplast genome structure in Araceae.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3919 ◽  
Author(s):  
Hui Cheng ◽  
Jinfeng Li ◽  
Hong Zhang ◽  
Binhua Cai ◽  
Zhihong Gao ◽  
...  

Compared with other members of the family Rosaceae, the chloroplast genomes ofFragariaspecies exhibit low variation, and this situation has limited phylogenetic analyses; thus, complete chloroplast genome sequencing ofFragariaspecies is needed. In this study, we sequenced the complete chloroplast genome ofF. × ananassa‘Benihoppe’ using the Illumina HiSeq 2500-PE150 platform and then performed a combination ofde novoassembly and reference-guided mapping of contigs to generate complete chloroplast genome sequences. The chloroplast genome exhibits a typical quadripartite structure with a pair of inverted repeats (IRs, 25,936 bp) separated by large (LSC, 85,531 bp) and small (SSC, 18,146 bp) single-copy (SC) regions. The length of theF. × ananassa‘Benihoppe’ chloroplast genome is 155,549 bp, representing the smallestFragariachloroplast genome observed to date. The genome encodes 112 unique genes, comprising 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Comparative analysis of the overall nucleotide sequence identity among ten complete chloroplast genomes confirmed that for both coding and non-coding regions in Rosaceae, SC regions exhibit higher sequence variation than IRs. The Ka/Ks ratio of most genes was less than 1, suggesting that most genes are under purifying selection. Moreover, the mVISTA results also showed a high degree of conservation in genome structure, gene order and gene content inFragaria, particularly among three octoploid strawberries which wereF. × ananassa‘Benihoppe’,F.chiloensis(GP33) andF.virginiana(O477). However, when the sequences of the coding and non-coding regions ofF. × ananassa‘Benihoppe’ were compared in detail with those ofF.chiloensis(GP33) andF.virginiana(O477), a number of SNPs and InDels were revealed by MEGA 7. Six non-coding regions (trnK-matK,trnS-trnG,atpF-atpH,trnC-petN,trnT-psbDandtrnP-psaJ) with a percentage of variable sites greater than 1% and no less than five parsimony-informative sites were identified and may be useful for phylogenetic analysis of the genusFragaria.


Diversity ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 403
Author(s):  
Umar Rehman ◽  
Nighat Sultana ◽  
Abdullah ◽  
Abbas Jamal ◽  
Maryam Muzaffar ◽  
...  

Family Phyllanthaceae belongs to the eudicot order Malpighiales, and its species are herbs, shrubs, and trees that are mostly distributed in tropical regions. Here, we elucidate the molecular evolution of the chloroplast genome in Phyllanthaceae and identify the polymorphic loci for phylogenetic inference. We de novo assembled the chloroplast genomes of three Phyllanthaceae species, i.e., Phyllanthus emblica, Flueggea virosa, and Leptopus cordifolius, and compared them with six other previously reported genomes. All species comprised two inverted repeat regions (size range 23,921–27,128 bp) that separated large single-copy (83,627–89,932 bp) and small single-copy (17,424–19,441 bp) regions. Chloroplast genomes contained 111–112 unique genes, including 77–78 protein-coding, 30 tRNAs, and 4 rRNAs. The deletion/pseudogenization of rps16 genes was found in only two species. High variability was seen in the number of oligonucleotide repeats, while guanine-cytosine contents, codon usage, amino acid frequency, simple sequence repeats, synonymous and non-synonymous substitutions, and transition and transversion substitutions were similar. The transition substitutions were higher in coding sequences than in non-coding sequences. Phylogenetic analysis revealed the polyphyletic nature of the genus Phyllanthus. The polymorphic protein-coding genes, including rpl22, ycf1, matK, ndhF, and rps15, were also determined, which may be helpful for reconstructing the high-resolution phylogenetic tree of the family Phyllanthaceae. Overall, the study provides insight into the chloroplast genome evolution in Phyllanthaceae.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 301
Author(s):  
Guanglong Hu ◽  
Yiheng Wang ◽  
Yan Wang ◽  
Shuqi Zheng ◽  
Wenxuan Dong ◽  
...  

Hawthorns (Crataegus L.) are one of the most important processing and table fruits in China, due to their medicinal properties and health benefits. However, the interspecific relationships and evolution history of cultivated Crataegus in China remain unclear. Our previously published data showed C. bretschneideri may be derived from the hybridization of C. pinnatifida with C. maximowiczii, and that introgression occurs between C. hupehensis, C. pinnatifida, and C. pinnatifida var. major. In the present study, chloroplast sequences were used to further elucidate the phylogenetic relationships of cultivated Crataegus native to China. The chloroplast genomes of three cultivated species and one related species of Crataegus were sequenced for comparative and phylogenetic analyses. The four chloroplast genomes of Crataegus exhibited typical quadripartite structures and ranged from 159,607 bp (C. bretschneideri) to 159,875 bp (C. maximowiczii) in length. The plastomes of the four species contained 113 genes consisting of 79 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Six hypervariable regions (ndhC-trnV(UAC)-trnM(CAU), ndhA, atpH-atpI, ndhF, trnR(UCU)-atpA, and ndhF-rpl32), 196 repeats, and a total of 386 simple sequence repeats were detected as potential variability makers for species identification and population genetic studies. In the phylogenomic analyses, we also compared the entire chloroplast genomes of three published Crataegus species: C. hupehensis (MW201730.1), C. pinnatifida (MN102356.1), and C. marshallii (MK920293.1). Our phylogenetic analyses grouped the seven Crataegus taxa into two main clusters. One cluster included C. bretschneideri, C. maximowiczii, and C. marshallii, whereas the other included C. hupehensis, C. pinnatifida, and C. pinnatifida var. major. Taken together, our findings indicate that C. maximowiczii is the maternal origin of C. bretschneideri. This work provides further evidence of introgression between C. hupehensis, C. pinnatifida, and C. pinnatifida var. major, and suggests that C. pinnatifida var. major might have been artificially selected and domesticated from hybrid populations, rather than evolved from C. pinnatifida.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hong Chang ◽  
Lei Zhang ◽  
Huanhuan Xie ◽  
Jianquan Liu ◽  
Zhenxiang Xi ◽  
...  

Crassulaceae are the largest family in the angiosperm order Saxifragales. Species of this family are characterized by succulent leaves and a unique photosynthetic pathway known as Crassulacean acid metabolism (CAM). Although the inter- and intrageneric relationships have been extensively studied over the last few decades, the infrafamilial relationships of Crassulaceae remain partially obscured. Here, we report nine newly sequenced chloroplast genomes, which comprise several key lineages of Crassulaceae. Our comparative analyses and positive selection analyses of Crassulaceae species indicate that the overall gene organization and function of the chloroplast genome are highly conserved across the family. No positively selected gene was statistically supported in Crassulaceae lineage using likelihood ratio test (LRT) based on branch-site models. Among the three subfamilies of Crassulaceae, our phylogenetic analyses of chloroplast protein-coding genes support Crassuloideae as sister to Kalanchoideae plus Sempervivoideae. Furthermore, within Sempervivoideae, our analyses unambiguously resolved five clades that are successively sister lineages, i.e., Telephium clade, Sempervivum clade, Aeonium clade, Leucosedum clade, and Acre clade. Overall, this study enhances our understanding of the infrafamilial relationships and the conservation of chloroplast genomes within Crassulaceae.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 744
Author(s):  
Yunyan Zhang ◽  
Yongjing Tian ◽  
David Y. P. Tng ◽  
Jingbo Zhou ◽  
Yuntian Zhang ◽  
...  

Litsea Lam. is an ecological and economic important genus of the “core Lauraceae” group in the Lauraceae. The few studies to date on the comparative chloroplast genomics and phylogenomics of Litsea have been conducted as part of other studies on the Lauraceae. Here, we sequenced the whole chloroplast genome sequence of Litsea auriculata, an endangered tree endemic to eastern China, and compared this with previously published chloroplast genome sequences of 11 other Litsea species. The chloroplast genomes of the 12 Litsea species ranged from 152,132 (L. szemaois) to 154,011 bp (L. garrettii) and exhibited a typical quadripartite structure with conserved genome arrangement and content, with length variations in the inverted repeat regions (IRs). No codon usage preferences were detected within the 30 codons used in the chloroplast genomes, indicating a conserved evolution model for the genus. Ten intergenic spacers (psbE–petL, trnH–psbA, petA–psbJ, ndhF–rpl32, ycf4–cemA, rpl32–trnL, ndhG–ndhI, psbC–trnS, trnE–trnT, and psbM–trnD) and five protein coding genes (ndhD, matK, ccsA, ycf1, and ndhF) were identified as divergence hotspot regions and DNA barcodes of Litsea species. In total, 876 chloroplast microsatellites were located within the 12 chloroplast genomes. Phylogenetic analyses conducted using the 51 additional complete chloroplast genomes of “core Lauraceae” species demonstrated that the 12 Litsea species grouped into four sub-clades within the Laurus-Neolitsea clade, and that Litsea is polyphyletic and closely related to the genera Lindera and Laurus. Our phylogeny strongly supported the monophyly of the following three clades (Laurus–Neolitsea, Cinnamomum–Ocotea, and Machilus–Persea) among the above investigated “core Lauraceae” species. Overall, our study highlighted the taxonomic utility of chloroplast genomes in Litsea, and the genetic markers identified here will facilitate future studies on the evolution, conservation, population genetics, and phylogeography of L. auriculata and other Litsea species.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yiheng Wang ◽  
Sheng Wang ◽  
Yanlei Liu ◽  
Qingjun Yuan ◽  
Jiahui Sun ◽  
...  

Abstract Background Atractylodes DC is the basic original plant of the widely used herbal medicines “Baizhu” and “Cangzhu” and an endemic genus in East Asia. Species within the genus have minor morphological differences, and the universal DNA barcodes cannot clearly distinguish the systemic relationship or identify the species of the genus. In order to solve these question, we sequenced the chloroplast genomes of all species of Atractylodes using high-throughput sequencing. Results The results indicate that the chloroplast genome of Atractylodes has a typical quadripartite structure and ranges from 152,294 bp (A. carlinoides) to 153,261 bp (A. macrocephala) in size. The genome of all species contains 113 genes, including 79 protein-coding genes, 30 transfer RNA genes and four ribosomal RNA genes. Four hotspots, rpl22-rps19-rpl2, psbM-trnD, trnR-trnT(GGU), and trnT(UGU)-trnL, and a total of 42–47 simple sequence repeats (SSR) were identified as the most promising potentially variable makers for species delimitation and population genetic studies. Phylogenetic analyses of the whole chloroplast genomes indicate that Atractylodes is a clade within the tribe Cynareae; Atractylodes species form a monophyly that clearly reflects the relationship within the genus. Conclusions Our study included investigations of the sequences and structural genomic variations, phylogenetics and mutation dynamics of Atractylodes chloroplast genomes and will facilitate future studies in population genetics, taxonomy and species identification.


2019 ◽  
Vol 42 (4) ◽  
pp. 601-611 ◽  
Author(s):  
Yan Li ◽  
Liukun Jia ◽  
Zhihua Wang ◽  
Rui Xing ◽  
Xiaofeng Chi ◽  
...  

Abstract Saxifraga sinomontana J.-T. Pan & Gornall belongs to Saxifraga sect. Ciliatae subsect. Hirculoideae, a lineage containing ca. 110 species whose phylogenetic relationships are largely unresolved due to recent rapid radiations. Analyses of complete chloroplast genomes have the potential to significantly improve the resolution of phylogenetic relationships in this young plant lineage. The complete chloroplast genome of S. sinomontana was de novo sequenced, assembled and then compared with that of other six Saxifragaceae species. The S. sinomontana chloroplast genome is 147,240 bp in length with a typical quadripartite structure, including a large single-copy region of 79,310 bp and a small single-copy region of 16,874 bp separated by a pair of inverted repeats (IRs) of 25,528 bp each. The chloroplast genome contains 113 unique genes, including 79 protein-coding genes, four rRNAs and 30 tRNAs, with 18 duplicates in the IRs. The gene content and organization are similar to other Saxifragaceae chloroplast genomes. Sixty-one simple sequence repeats were identified in the S. sinomontana chloroplast genome, mostly represented by mononucleotide repeats of polyadenine or polythymine. Comparative analysis revealed 12 highly divergent regions in the intergenic spacers, as well as coding genes of matK, ndhK, accD, cemA, rpoA, rps19, ndhF, ccsA, ndhD and ycf1. Phylogenetic reconstruction of seven Saxifragaceae species based on 66 protein-coding genes received high bootstrap support values for nearly all identified nodes, suggesting a promising opportunity to resolve infrasectional relationships of the most species-rich section Ciliatae of Saxifraga.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wenbin Xu ◽  
Boshun Xia ◽  
Xinwei Li

AbstractThe six pinnate-leaved species are a very particular group in the genus Primula. In the present paper, we sequenced, assembled and annotated the chloroplast genomes of five of them (P. cicutarrifolia, P. hubeiensis, P. jiugongshanensis, P. merrilliana, P. ranunculoides). The five chloroplast genomes ranged from ~ 150 to 152 kb, containing 113 genes (four ribosomal RNA genes, 29 tRNA genes and 80 protein-coding genes). The six pinnate-leaved species exhibited synteny of gene order and possessed similar IR boundary regions in chloroplast genomes. The gene accD was pseudogenized in P. filchnerae. In the chloroplast genomes of the six pinnate-leaved Primula species, SSRs, repeating sequences and divergence hotspots were identified; ycf1 and trnH-psbA were the most variable markers among CDSs and noncoding sequences, respectively. Phylogenetic analyses showed that the six Primula species were separated into two distant clades: one was formed by P. filchnerae and P. sinensis and the other clade was consisting of two subclades, one formed by P. hubeiensis and P. ranunculoides, the other by P. merrilliana, P. cicutarrifolia and P. jiugongshanensis. P. hubeiensis was closely related with P. ranunculoides and therefore it should be placed into Sect. Ranunculoides. P. cicutarrifolia did not group first with P. ranunculoides but with P. merrilliana, although the former two were once united in one species, our results supported the separation of P. ranunculoides from P. cicutarrifolia as one distinct species.


Author(s):  
Wojciech Pląder ◽  
Yasushi Yukawa ◽  
Masahiro Sugiura ◽  
Stefan Malepszy

AbstractThe complete nucleotide sequence of the cucumber (C. sativus L. var. Borszczagowski) chloroplast genome has been determined. The genome is composed of 155,293 bp containing a pair of inverted repeats of 25,191 bp, which are separated by two single-copy regions, a small 18,222-bp one and a large 86,688-bp one. The chloroplast genome of cucumber contains 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species), and 37 tRNA genes (30 tRNA species), with 18 of them located in the inverted repeat region. Of these genes, 16 contain one intron, and two genes and one ycf contain 2 introns. Twenty-one small inversions that form stem-loop structures, ranging from 18 to 49 bp, have been identified. Eight of them show similarity to those of other species, while eight seem to be cucumber specific. Detailed comparisons of ycf2 and ycf15, and the overall structure to other chloroplast genomes were performed.


Sign in / Sign up

Export Citation Format

Share Document