scholarly journals Functional and transcriptional profiling of non-coding RNAs in yeast reveal context-dependent phenotypes and widespread in trans effects on the protein regulatory network

2020 ◽  
Author(s):  
Laura Natalia Balarezo-Cisneros ◽  
Steven Parker ◽  
Marcin G Fraczek ◽  
Soukaina Timouma ◽  
Ping Wang ◽  
...  

AbstractNon-coding RNAs (ncRNAs), including the more recently identified Stable Unannotated Transcripts (SUTs) and Cryptic Unstable Transcripts (CUTs), are increasingly being shown to play pivotal roles in the transcriptional and post-transcriptional regulation of genes in eukaryotes. Here, we carried out a large-scale screening of ncRNAs in Saccharomyces cerevisiae, and provide evidence for SUT and CUT function. Phenotypic data on 372 ncRNA deletion strains in 23 different growth conditions were collected, identifying ncRNAs responsible for significant cellular fitness changes. Transcriptome profiles were assembled for 18 haploid ncRNA deletion mutants and 2 essential ncRNA heterozygous deletants. Guided by the resulting RNA-seq data we analysed the genome-wide dysregulation of protein coding genes and non-coding transcripts. Novel functional ncRNAs, SUT125, SUT126, SUT035 and SUT532 that act in trans by modulating transcription factors were identified. Furthermore, we described the impact of SUTs and CUTs in modulating coding gene expression in response of different environmental conditions, regulating important biological process such as respiration (SUT125, SUT126, SUT035, SUT432), steroid biosynthesis (CUT494, SUT530, SUT468) or rRNA processing (SUT075 and snR30). Overall, this data captures and integrates the regulatory and phenotypic network of ncRNAs and protein coding genes, providing genome-wide evidence of the impact of ncRNAs on cellular homeostasis.Author SummaryThe yeast genome contains 25% of non-coding RNA molecules (ncRNAs), which do not translate into proteins but are involved in regulation of gene expression. ncRNAs can affect nearby genes by physically interfering with their transcription (cis mode of action), or they interact with DNA, proteins or others RNAs to regulate the expression of distant genes (trans mode of action). Examples of cis-acting ncRNAs have been broadly described, however genome-wide studies to identify functional trans-acting ncRNAs involved in global gene regulation are still lacking. Here, we used the ncRNA yeast deletion collection to score their impact on cellular function in different environmental conditions. A group of 20 ncRNAs mutants with broad fitness diversity were selected to investigate their effect on the protein and ncRNA expression network. We showed a high correlation between altered phenotypes and global transcriptional changes, in an environmental dependent manner. We confirmed the widespread trans acting expressional regulation of ncRNAs in the genome and their role in affecting transcription factors. These findings support the notion of the involvement on ncRNAs in fine tuning the cellular expression via regulations of TFs, as an advantageous RNA-mediated mechanism that can be fast and cost-effective for the cells.

PLoS Genetics ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. e1008761
Author(s):  
Laura Natalia Balarezo-Cisneros ◽  
Steven Parker ◽  
Marcin G. Fraczek ◽  
Soukaina Timouma ◽  
Ping Wang ◽  
...  

Non-coding RNAs (ncRNAs), including the more recently identified Stable Unannotated Transcripts (SUTs) and Cryptic Unstable Transcripts (CUTs), are increasingly being shown to play pivotal roles in the transcriptional and post-transcriptional regulation of genes in eukaryotes. Here, we carried out a large-scale screening of ncRNAs in Saccharomyces cerevisiae, and provide evidence for SUT and CUT function. Phenotypic data on 372 ncRNA deletion strains in 23 different growth conditions were collected, identifying ncRNAs responsible for significant cellular fitness changes. Transcriptome profiles were assembled for 18 haploid ncRNA deletion mutants and 2 essential ncRNA heterozygous deletants. Guided by the resulting RNA-seq data we analysed the genome-wide dysregulation of protein coding genes and non-coding transcripts. Novel functional ncRNAs, SUT125, SUT126, SUT035 and SUT532 that act in trans by modulating transcription factors were identified. Furthermore, we described the impact of SUTs and CUTs in modulating coding gene expression in response to different environmental conditions, regulating important biological process such as respiration (SUT125, SUT126, SUT035, SUT432), steroid biosynthesis (CUT494, SUT053, SUT468) or rRNA processing (SUT075 and snR30). Overall, these data capture and integrate the regulatory and phenotypic network of ncRNAs and protein-coding genes, providing genome-wide evidence of the impact of ncRNAs on cellular homeostasis.


2017 ◽  
Author(s):  
Cristina Cruz ◽  
Monica Della Rosa ◽  
Christel Krueger ◽  
Qian Gao ◽  
Lucy Field ◽  
...  

AbstractTranscription of protein coding genes is accompanied by recruitment of COMPASS to promoter-proximal chromatin, which deposits di- and tri-methylation on histone H3 lysine 4 (H3K4) to form H3K4me2 and H3K4me3. Here we determine the importance of COMPASS in maintaining gene expression across lifespan in budding yeast. We find that COMPASS mutations dramatically reduce replicative lifespan and cause widespread gene expression defects. Known repressive functions of H3K4me2 are progressively lost with age, while hundreds of genes become dependent on H3K4me3 for full expression. Induction of these H3K4me3 dependent genes is also impacted in young cells lacking COMPASS components including the H3K4me3-specific factor Spp1. Remarkably, the genome-wide occurrence of H3K4me3 is progressively reduced with age despite widespread transcriptional induction, minimising the normal positive correlation between promoter H3K4me3 and gene expression. Our results provide clear evidence that H3K4me3 is required to attain normal expression levels of many genes across organismal lifespan.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiaoping Tan ◽  
Yang Liu ◽  
Taiming Zhang ◽  
Shuyan Cong

Abstract Background Huntington's disease (HD) is one of the most common polyglutamine disorders, leading to progressive dyskinesia, cognitive impairment, and neuropsychological problems. Besides the dysregulation of many protein-coding genes in HD, previous studies have revealed a variety of non-coding RNAs that are also dysregulated in HD, including several long non-coding RNAs (lncRNAs). However, an integrated analysis of differentially expressed (DE) genes based on a competing endogenous RNA (ceRNA) network is still currently lacking. Methods In this study, we have systematically analyzed the gene expression profile data of neural progenitor cells (NPCs) derived from patients with HD and controls (healthy controls and the isogenic controls of HD patient cell lines corrected using a CRISPR-Cas9 approach at the HTT locus) to screen out DE mRNAs and DE lncRNAs and create a ceRNA network. To learn more about the possible functions of lncRNAs in the ceRNA regulatory network in HD, we conducted a functional analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) and established a protein–protein interaction (PPI) network for mRNAs interacting with these lncRNAs. Results We identified 490 DE mRNAs and 94 DE lncRNAs, respectively. Of these, 189 mRNAs and 20 lncRNAs were applied to create a ceRNA network. The results showed that the function of DE lncRNAs mainly correlated with transcriptional regulation as demonstrated by GO analysis. Also, KEGG enrichment analysis showed these lncRNAs were involved in tumor necrosis factor, calcium, Wnt, and NF-kappa B signaling pathways. Interestingly, the PPI network revealed that a variety of transcription factors in the ceRNA network interacted with each other, suggesting such lncRNAs may regulate transcription in HD by controlling the expression of such protein-coding genes, especially transcription factors. Conclusions Our research provides new clues for uncovering the mechanisms of lncRNAs in HD and can be used as the focus for further investigation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Frédéric Jehl ◽  
Kévin Muret ◽  
Maria Bernard ◽  
Morgane Boutin ◽  
Laetitia Lagoutte ◽  
...  

AbstractLong non-coding RNAs (LNC) regulate numerous biological processes. In contrast to human, the identification of LNC in farm species, like chicken, is still lacunar. We propose a catalogue of 52,075 chicken genes enriched in LNC (http://www.fragencode.org/), built from the Ensembl reference extended using novel LNC modelled here from 364 RNA-seq and LNC from four public databases. The Ensembl reference grew from 4,643 to 30,084 LNC, of which 59% and 41% with expression ≥ 0.5 and ≥ 1 TPM respectively. Characterization of these LNC relatively to the closest protein coding genes (PCG) revealed that 79% of LNC are in intergenic regions, as in other species. Expression analysis across 25 tissues revealed an enrichment of co-expressed LNC:PCG pairs, suggesting co-regulation and/or co-function. As expected LNC were more tissue-specific than PCG (25% vs. 10%). Similarly to human, 16% of chicken LNC hosted one or more miRNA. We highlighted a new chicken LNC, hosting miR155, conserved in human, highly expressed in immune tissues like miR155, and correlated with immunity-related PCG in both species. Among LNC:PCG pairs tissue-specific in the same tissue, we revealed an enrichment of divergent pairs with the PCG coding transcription factors, as for example LHX5, HXD3 and TBX4, in both human and chicken.


2022 ◽  
Vol 8 (1) ◽  
pp. 7
Author(s):  
Hyung Chul Kim ◽  
Emmitt R. Jolly

Trypanosoma brucei is a parasitic protist that causes African sleeping sickness. The establishment of T. brucei cell lines has provided a significant advantage for the majority of T. brucei research. However, these cell lines were isolated and maintained in culture for decades, occasionally accumulating changes in gene expression. Since trypanosome strains have been maintained in culture for decades, it is possible that difference may have accumulated in fast-evolving non-coding RNAs between trypanosomes from the wild and those maintained extensively in cultures. To address this, we compared the lncRNA expression profile of trypanosomes maintained as cultured cell lines (CL) to those extracted from human patients, wildtype (WT). We identified lncRNAs from CL and WT from available transcriptomic data and demonstrate that CL and WT have unique sets of lncRNAs expressed. We further demonstrate that the unique and shared lncRNAs are differentially expressed between CL and WT parasites, and that these lncRNAs are more evenly up-regulated and down-regulated than protein-coding genes. We validated the expression of these lncRNAs using qPCR. Taken together, this study demonstrates that lncRNAs are differentially expressed between cell lines and wildtype T. brucei and provides evidence for potential evolution of lncRNAs, specifically in T. brucei maintained in culture.


2018 ◽  
Author(s):  
Eugene J. Gardner ◽  
Elena Prigmore ◽  
Giuseppe Gallone ◽  
Petr Danecek ◽  
Kaitlin E. Samocha ◽  
...  

AbstractMobile genetic Elements (MEs) are segments of DNA which, through an RNA intermediate, can generate new copies of themselves and other transcribed sequences through the process of retrotransposition (RT). In humans several disorders have been attributed to RT, but the role of RT in severe developmental disorders (DD) has not yet been explored. As such, we have identified RT-derived events in 9,738 exome sequenced trios with DD-affected probands as part of the Deciphering Developmental Disorders (DDD) study. We have ascertained 9 de novo MEs, 4 of which are likely causative of the patient’s symptoms (0.04% of probands), as well as 2 de novo gene retroduplications. Beyond identifying likely diagnostic RT events, we have estimated genome-wide germline ME mutagenesis and constraint and demonstrated that coding RT events have signatures of purifying selection equivalent to those of truncating mutations. Overall, our analysis represents a comprehensive interrogation of the impact of retrotransposition on protein coding genes and a framework for future evolutionary and disease studies.


2020 ◽  
Author(s):  
Xiaoping Tan ◽  
Shuyan Cong ◽  
Yang Liu ◽  
Taiming Zhang

Abstract Background Huntington's disease (HD) is one of the most common polyglutamine disorders, leading to progressive dyskinesia, cognitive impairment, and neuropsychological problems. Besides the dysregulation of many protein-coding genes in HD, previous studies have revealed a variety of non-coding RNAs that are dysregulated in HD, including several long non-coding RNAs (lncRNAs). However, an integrated analysis of differentially expressed (DE) genes based on a competing endogenous RNA (ceRNA) network is still currently lacking. Results Here, we have systematically analyzed the gene expression profile data of neural progenitor cells (NPCs) derived from patients with HD and controls (healthy controls and the isogenic controls of HD patient cell lines corrected using CRISPR-Cas9 approach at the HTT locus, and we identified 490 DE mRNAs and 94 DE lncRNAs, respectively. Of these, 189 mRNAs and 20 lncRNAs were applied to create a ceRNA network. To learn more about the possible functions of lncRNAs in the ceRNA regulatory network in HD, we conducted a functional analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) and established a protein-protein interaction (PPI) network for mRNAs interacting with these lncRNAs. It is suggested that the function of DE lncRNAs mainly correlated with transcriptional regulation demonstrated by GO analysis. Also, KEGG enrichment analysis showed these lncRNAs were involved in tumor necrosis factor, calcium, Wnt, and NF-kappa B signaling pathways. Interestingly, the PPI network revealed that a variety of transcription factors in the ceRNA network interacted with each other, suggesting such lncRNAs may regulate transcription in HD by controlling the expression of such protein-coding genes, especially transcription factors. Conclusions Our research provides new clues for uncovering the mechanism of lncRNAs in HD and can be used as the focus for further investigation.


2021 ◽  
Author(s):  
Alex RJ Lima ◽  
Saloe B Poubel ◽  
Juliana N Roson ◽  
Loyze PO de Lima ◽  
Hellida M Costa-Silva ◽  
...  

Background: Genomic organization and gene expression regulation in trypanosomes are remarkable because protein-coding genes are organized into codirectional gene clusters with unrelated functions. Moreover, there is no dedicated promoter for each gene, resulting in polycistronic gene transcription, with posttranscriptional control playing a major role. Nonetheless, these parasites harbor epigenetic modifications at critical regulatory genome features that dynamically change among parasite stages, which are not fully understood. Results: Here, we investigated the impact of chromatin changes in a scenario commanded by posttranscriptional control exploring the parasite Trypanosoma cruzi and its differentiation program using genome-wide approaches supported by transmission electron microscopy. The integration of FAIRE and MNase-seq data, two complementary epigenomic approaches, enabled us to identify differences in T. cruzi genome compartments, putative transcriptional start regions and virulence factors. In addition, we also detected developmental chromatin regulation at tRNA loci (tDNA), which seems to be linked to the translation regulatory mechanism required for parasite differentiation. Strikingly, a positive correlation was observed between active chromatin and steady-state transcription levels. Conclusion: Taken together, our results indicate that chromatin changes reflect the unusual gene expression regulation of trypanosomes and the differences among parasite developmental stages, even in the context of a lack of canonical transcriptional control of protein-coding genes.


2016 ◽  
Author(s):  
Runxuan Zhang ◽  
Cristiane P. G. Calixto ◽  
Yamile Marquez ◽  
Peter Venhuizen ◽  
Nikoleta A. Tzioutziou ◽  
...  

AbstractBackgroundAlternative splicing is the major post-transcriptional mechanism by which gene expression is regulated and affects a wide range of processes and responses in most eukaryotic organisms. RNA-sequencing (RNA-seq) can generate genome-wide quantification of individual transcript isoforms to identify changes in expression and alternative splicing. RNA-seq is an essential modern tool but its ability to accurately quantify transcript isoforms depends on the diversity, completeness and quality of the transcript information.ResultsWe have developed a new Reference Transcript Dataset for Arabidopsis (AtRTD2) for RNA-seq analysis containing over 82k non-redundant transcripts, whereby 74,194 transcripts originate from 27,667 protein-coding genes. A total of 13,524 protein-coding genes have at least one alternatively spliced transcript in AtRTD2 such that about 60% of the 22,453 protein-coding, intron-containing genes in Arabidopsis undergo alternative splicing. More than 600 putative U12 introns were identified in more than 2,000 transcripts. AtRTD2 was generated from transcript assemblies of ca. 8.5 billion pairs of reads from 285 RNA-seq data sets obtained from 129 RNA-seq libraries and merged along with the previous version, AtRTD, and Araport11 transcript assemblies. AtRTD2 increases the diversity of transcripts and through application of stringent filters represents the most extensive and accurate transcript collection for Arabidopsis to date. We have demonstrated a generally good correlation of alternative splicing ratios from RNA-seq data analysed by Salmon and experimental data from high resolution RT-PCR. However, we have observed inaccurate quantification of transcript isoforms for genes with multiple transcripts which have variation in the lengths of their UTRs. This variation is not effectively corrected in RNA-seq analysis programmes and will therefore impact RNA-seq analyses generally. To address this, we have tested different genome-wide modifications of AtRTD2 to improve transcript quantification and alternative splicing analysis. As a result, we release AtRTD2-QUASI specifically for use in Quantification of Alternatively Spliced Isoforms and demonstrate that it out-performs other available transcriptomes for RNA-seq analysis.ConclusionsWe have generated a new transcriptome resource for RNA-seq analyses in Arabidopsis (AtRTD2) designed to address quantification of different isoforms and alternative splicing in gene expression studies. Experimental validation of alternative splicing changes identified inaccuracies in transcript quantification due to UTR length variation. To solve this problem, we also release a modified reference transcriptome, AtRTD2-QUASI for quantification of transcript isoforms, which shows high correlation with experimental data.


2021 ◽  
Author(s):  
Alex RJ Lima ◽  
Saloe B Poubel ◽  
Juliana N Rosón ◽  
Loyze PO de Lima ◽  
Hellida M Costa-Silva ◽  
...  

Abstract Background: Genomic organization and gene expression regulation in trypanosomes are remarkable because protein-coding genes are organized into codirectional gene clusters with unrelated functions. Moreover, there is no dedicated promoter for each gene, resulting in polycistronic gene transcription, with posttranscriptional control playing a major role. Nonetheless, these parasites harbor epigenetic modifications at critical regulatory genome features that dynamically change among parasite stages, which are not fully understood. Results: Here, we investigated the impact of chromatin changes in a scenario commanded by posttranscriptional control exploring the parasite Trypanosoma cruzi and its differentiation program using genome-wide approaches supported by transmission electron microscopy. The integration of FAIRE and MNase-seq data, two complementary epigenomic approaches, enabled us to identify differences in T. cruzi genome compartments, putative transcriptional start regions and virulence factors. In addition, we also detected developmental chromatin regulation at tRNA loci (tDNA), which seems to be linked to the translation regulatory mechanism required for parasite differentiation. Strikingly, a positive correlation was observed between active chromatin and steady-state transcription levels. Conclusion: Taken together, our results indicate that chromatin changes reflect the unusual gene expression regulation of trypanosomes and the differences among parasite developmental stages, even in the context of a lack of canonical transcriptional control of protein-coding genes.


Sign in / Sign up

Export Citation Format

Share Document