scholarly journals Microbial community composition is affected by press, but not pulse, seawater intrusion

2020 ◽  
Author(s):  
Courtney Mobilian ◽  
Nathan I. Wisnoski ◽  
Jay T. Lennon ◽  
Merryl Alber ◽  
Sarah Widney ◽  
...  

AbstractTidal freshwater marshes (TFMs) are threatened by seawater intrusion, which can affect microbial communities and alter biogeochemical processes. Here, we report on Seawater Addition Long Term Experiment (SALTEx), a manipulative field experiment that investigated continuous (press) and episodic (pulse, 2 months/yr) inputs of brackish water on microbial communities in a TFM. After 2.5 years, microbial diversity was lower in press treatments than in control (untreated) plots. Sulfate reducers increased in response to both press and pulse treatments whereas methanogens did not differ among treatments. Our results suggest that microbial communities in TFMs are resilient to episodic events, but that continuous seawater intrusion may alter bacterial diversity in ways that affect ecosystem functioning.Scientific Significance StatementSea level rise and seawater intrusion threaten tidal freshwater marshes (TFMs) and the important ecosystem services they provide. Intrusion of seawater in TFMs can occur across a range of timescales, such as episodic events, like storm surges or drought, or continuous intrusion as a result of rising sea level. The effects of these stressors on TFM microbial communities are not well understood. Our multi-year field manipulation of brackish water inputs revealed that microbial communities were resilient to short-term pulses of salinity whereas continuous seawater intrusion led to reduced microbial diversity along with changes in relative abundance of key functional groups. Such alterations may diminish the ability of TFMs to sequester carbon and cycle nutrients.

2021 ◽  
Author(s):  
Liping Qiu ◽  
Qian Zhang ◽  
Hansong Zhu ◽  
Peter B. Reich ◽  
Samiran Banerjee ◽  
...  

AbstractWhile soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality.


2016 ◽  
Vol 17 (2) ◽  
pp. 311-323 ◽  
Author(s):  
Hany F. Abd-Elhamid

Seawater intrusion is considered one of the main processes that degrade water quality by raising salinity. Over-pumping and decreasing recharge are considered the main causes of saltwater intrusion. Moreover, climate change and sea-level rise accelerate saltwater intrusion. In this paper SEAWAT code was used to study groundwater flow and seawater intrusion in the Eastern Nile Delta aquifer considering four scenarios of climate change including sea-level rise, increasing abstraction, decreasing recharge and the combination of these scenarios. The results showed that decreasing recharge has a significant effect on seawater intrusion. However, the combinations of these scenarios resulted in harmful intrusion and loss of groundwater. The soil salinity increased, which decreased agricultural production. The control of seawater intrusion and protection of groundwater resources and soil is very important. Different scenarios were implemented to protect the aquifer from seawater intrusion including decreasing abstraction, increasing recharge, abstracting brackish water and the combination of these three scenarios. The abstraction of brackish water gave a higher reduction of seawater intrusion and decreased groundwater table in the aquifer near the shore line, which protected the soil from salinity and increased agricultural production. However, the combination of these three scenarios gave the highest reduction of seawater intrusion.


2001 ◽  
Vol 43 (1) ◽  
pp. 83-90 ◽  
Author(s):  
J. van Heerden ◽  
M. M. Ehlers ◽  
T. E. Cloete

In this study, different carbon source profiles were generated by inoculating Biolog GN microwell plates, with different dilutions of microbial communities from a number of activated sludge systems. This led to the successful generation of patterns reflecting diversity and evenness in the different systems. The high number of substrates utilized at the lower dilutions (10–1 and 10–2) indicated a high microbial diversity in the community, but not necessarily evenness of each species. Evenness of each species was reflected upon further dilution. Our results indicated differences in the microbial community composition amongst some of the activated sludge systems studied. These differences were not specifically related to phosphate removing and non phosphate removing systems.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1542
Author(s):  
Martina Kracmarova ◽  
Hana Kratochvilova ◽  
Ondrej Uhlik ◽  
Michal Strejcek ◽  
Jirina Szakova ◽  
...  

Fertilization is a worldwide agricultural practice used in agronomy to increase crop yields. Fertilizer application influences overall soil characteristics, including soil microbial community composition and metabolic processes mediated by microbial enzymatic activity. Changes in the structure of microbial communities and their metabolic activity after long-term fertilization were studied in this research. We hypothesized that the different types of fertilization regimes affect nutrient levels in the soil which subsequently influence the metabolic processes and microbial diversity and community structure. Manure (MF; 330 kg N/ha), sewage sludge at two application doses (SF; 330 kg N/ha and SF3x; 990 kg N/ha) and chemical (NPK; N-P-K nutrients in concentrations of 330-90-300 kg/ha) fertilizers have been applied regularly to an experimental field since 1996. The microbial diversity increased in all soils amended with both organic (MF, SF, SF3x) and chemical (NPK) fertilizers. The shifts in microbial communities were observed, which were mainly caused by less abundant genera that were mostly associated with one or more fertilization treatment(s). Fertilization also influenced soil chemistry and the activity of β-xylosidase, β-N-acetylglucosaminidase (NAG), acid phosphatase and FDA-hydrolases. Specifically, all fertilization treatments were associated with a higher activity of β xylosidase and lower NAG activity. Only the NPK treatment was associated with a higher activity of acid phosphatase.


Author(s):  
Vladimir Fomin ◽  
Vladimir Fomin ◽  
Dmitrii Alekseev ◽  
Dmitrii Alekseev ◽  
Dmitrii Lazorenko ◽  
...  

Storm surges and wind waves are ones of the most important hydrological characteristics, which determine dynamics of the Sea of Azov. Extreme storm surges in Taganrog Bay and flooding in the Don Delta can be formed under the effect of strong western winds. In this work the sea level oscillations and wind waves in the Taganrog Bay were simulated by means of the coupled SWAN+ADCIRC numerical model, taking into account the flooding and drying mechanisms. The calculations were carried out on an unstructured mesh with high resolution. The wind and atmospheric pressure fields for the extreme storm from 20 to 28 of September, 2014 obtained from WRF regional atmospheric model were used as forcing. The analysis of simulation results showed the following. The western and northern parts of the Don Delta were the most flood-prone during the storm. The size of the flooded area of the Don Delta exceeded 50%. Interaction of storm surge and wind wave accelerated the flooding process, increased the size of the flooded area and led to the intensification of wind waves in the upper of Taganrog Bay due to the general rise of the sea level.


2021 ◽  
Vol 9 (6) ◽  
pp. 595
Author(s):  
Américo Soares Ribeiro ◽  
Carina Lurdes Lopes ◽  
Magda Catarina Sousa ◽  
Moncho Gomez-Gesteira ◽  
João Miguel Dias

Ports constitute a significant influence in the economic activity in coastal areas through operations and infrastructures to facilitate land and maritime transport of cargo. Ports are located in a multi-dimensional environment facing ocean and river hazards. Higher warming scenarios indicate Europe’s ports will be exposed to higher risk due to the increase in extreme sea levels (ESL), a combination of the mean sea level, tide, and storm surge. Located on the west Iberia Peninsula, the Aveiro Port is located in a coastal lagoon exposed to ocean and river flows, contributing to higher flood risk. This study aims to assess the flood extent for Aveiro Port for historical (1979–2005), near future (2026–2045), and far future (2081–2099) periods scenarios considering different return periods (10, 25, and 100-year) for the flood drivers, through numerical simulations of the ESL, wave regime, and riverine flows simultaneously. Spatial maps considering the flood extent and calculated area show that most of the port infrastructures' resilience to flooding is found under the historical period, with some marginal floods. Under climate change impacts, the port flood extent gradually increases for higher return periods, where most of the terminals are at high risk of being flooded for the far-future period, whose contribution is primarily due to mean sea-level rise and storm surges.


2021 ◽  
Author(s):  
Kevin Horsburgh ◽  
Ivan D. Haigh ◽  
Jane Williams ◽  
Michela De Dominicis ◽  
Judith Wolf ◽  
...  

AbstractIn this paper, we show that over the next few decades, the natural variability of mid-latitude storm systems is likely to be a more important driver of coastal extreme sea levels than either mean sea level rise or climatically induced changes to storminess. Due to their episodic nature, the variability of local sea level response, and our short observational record, understanding the natural variability of storm surges is at least as important as understanding projected long-term mean sea level changes due to global warming. Using the December 2013 North Atlantic Storm Xaver as a baseline, we used a meteorological forecast modification tool to create “grey swan” events, whilst maintaining key physical properties of the storm system. Here we define “grey swan” to mean an event which is expected on the grounds of natural variability but is not within the observational record. For each of these synthesised storm events, we simulated storm tides and waves in the North Sea using hydrodynamic models that are routinely used in operational forecasting systems. The grey swan storms produced storm surges that were consistently higher than those experienced during the December 2013 event at all analysed tide gauge locations along the UK east coast. The additional storm surge elevations obtained in our simulations are comparable to high-end projected mean sea level rises for the year 2100 for the European coastline. Our results indicate strongly that mid-latitude storms, capable of generating more extreme storm surges and waves than ever observed, are likely due to natural variability. We confirmed previous observations that more extreme storm surges in semi-enclosed basins can be caused by slowing down the speed of movement of the storm, and we provide a novel explanation in terms of slower storm propagation allowing the dynamical response to approach equilibrium. We did not find any significant changes to maximum wave heights at the coast, with changes largely confined to deeper water. Many other regions of the world experience storm surges driven by mid-latitude weather systems. Our approach could therefore be adopted more widely to identify physically plausible, low probability, potentially catastrophic coastal flood events and to assist with major incident planning.


Waterbirds ◽  
2015 ◽  
Vol 38 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Shawn R. Craik ◽  
Alan R. Hanson ◽  
Rodger D. Titman ◽  
Matthew L. Mahoney ◽  
Éric Tremblay

2021 ◽  
Author(s):  
Anastasia Arturovna Semenova ◽  
◽  
Yulia Konstantinovna Yushina ◽  
Maria Alexandrovna Grudistova ◽  
Elena Viktorovna Zaiko ◽  
...  

The article discusses the results of a study of the microbial diversity of objects in the production environment of two meat processing enterprises, including antibiotic resistance, isolated strains of pathogenic microorganisms and their ability to biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document