scholarly journals Prediction of Motor Imagery Tasks from Multi-Channel EEG Data for Brain-Computer Interface Applications

2020 ◽  
Author(s):  
Md. Ochiuddin Miah ◽  
Md. Mahfuzur Rahman ◽  
Rafsanjani Muhammod ◽  
Dewan Md. Farid

AbstractThe classification of motor imagery electroencephalogram (MI-EEG) is a pivotal part of the biosignal classification in the brain-computer interface (BCI) applications. Currently, this bio-engineering based technology is being employed by researchers in various fields to develop cutting edge applications. The classification of real-time MI-EEG signal is the core computing and challenging task in these applications. It is well-known that the existing classification methods are not so accurate due to the high dimensionality and dynamic behaviors of the real-time EEG data. To improve the classification performance of real-time BCI applications, this paper presents a clustering-based ensemble technique and a developed brain game that distinguishes different human thoughts. At first, we have gathered the brain signals, extracted and selected informative features from these signals to generate training and testing sets. After that, we have constructed several classifiers using Artificial Neural Network (ANN), Support Vector Machine (SVM), naïve Bayes, Decision Tree (DT), Random Forest, Bagging, AdaBoost and compared the performance of these existing approaches with suggested clustering-based ensemble technique. On average, the proposed ensemble technique improved the classification accuracy of roughly 5 to 15% compared to the existing methods. Finally, we have developed the targeted brain game employing our suggested ensemble technique. In this game, real-time EEG signal classification and prediction tabulation through animated ball are controlled via threads. By playing this game, users can control the movements of the balls via the brain signals of motor imagery movements without using any traditional input devices. All relevant codes are available via open repository at: https://github.com/mrzResearchArena/MI-EEG.

2021 ◽  
Author(s):  
Md Ochiuddin Miah ◽  
Rafsanjani Muhammod ◽  
Khondaker Abdullah Al Mamun ◽  
Dewan Md. Farid ◽  
Shiu Kumar ◽  
...  

Background: The classification of motor imagery electroencephalogram (MI-EEG) is a pivotal task in the biosignal classification process in brain-computer interface (BCI) applications. Currently, this bio-engineering-based technology is being employed by researchers in various fields to develop cutting-edge applications. The classification of real-time MI-EEG signals is the most challenging task in these applications. The prediction performance of the existing classification methods is still limited due to the high dimensionality and dynamic behaviors of the real-time EEG data. Proposed Method: To enhance the classification performance of real-time BCI applications, this paper presents a new clustering-based ensemble technique called CluSem to mitigate this problem. We also develop a new brain game called CluGame using this method to evaluate the classification performance of real-time motor imagery movements. In this game, real-time EEG signal classification and prediction tabulation through animated balls are controlled via threads. By playing this game, users can control the movements of the balls via the brain signals of motor imagery movements without using any traditional input devices. Results: Our results demonstrate that CluSem is able to improve the classification accuracy between 5% and 15% compared to the existing methods on our collected as well as the publicly available EEG datasets. The source codes used to implement CluSem and CluGame are publicly available at https://github.com/MdOchiuddinMiah/MI-BCI_ML.


Author(s):  
Jafar Zamani ◽  
Ali Boniadi Naieni

Purpose: There are many methods for advertisements of products and neuromarketing is new area in this field. In neuromarketing, we use neuroscience information for revealing Consumer behavior by extracting brain activity. Functional Magnetic Resonance Imaging (fMRI), Magnetoencephalography (MEG), and Electroencephalography (EEG) are high efficient tools for investigating the brain activity in neuromarketing. EEG signal is a high temporal resolution and a cheap method for examining the brain activity. Materials and Methods: 32 subjects (16 males and 16 females) aging between 20-35 years old participated in this study. We proposed neuromarketing method exploit EEG system for predicting consumer preferences while they view E-commerce products. We apply some important preprocessing steps for noise and artifacts elimination of the EEG signal. In next step feature extraction methods are applied on the EEG data such as Discrete Wavelet Transform (DWT) and statistical features. The goal of this study is classification of analyzed EEG signal to likes and dislikes using supervised algorithms. We use Support Vector Machine (SVM), Artificial Neural Network (ANN) and Random Forest (RF) for data classification. The mentioned methods were used for whole and lobe brain data. Results: The results show high efficacy for SVM algorithms than other methods. Accuracy, sensitivity, specificity and precision parameters were used for evaluation of the model performance. The results show high performance of SVM algorithms for classification of the data with accuracy more than 87% and 84% for whole and parietal lobe data. Conclusion: We designed a tool with EEG signals for extraction brain activity of consumers using neuromarketing methods. We investigated the effects of advertising on brain activity of consumers by EEG signals measures.


2011 ◽  
Vol 304 ◽  
pp. 274-278
Author(s):  
Xiao Dan

Subjects are identified by classifying motor imagery EEG signal. Energy entropy was used to preprocess motor imagery EEG data, and the Fisher class separability criterion was applied to extract features. Finally, classification of of extracted features was performed by a Linear discrimination analysis method. Four types motor imagery EEG of three subjects was classified respectively. The results showed that the average classification accuracy achieved over 85%, and the highest was 88.7% on tongue movement imagery EEG


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Huiping Jiang ◽  
Demeng Wu ◽  
Rui Jiao ◽  
Zongnan Wang

Electroencephalography (EEG) is the measurement of neuronal activity in different areas of the brain through the use of electrodes. As EEG signal technology has matured over the years, it has been applied in various methods to EEG emotion recognition, most significantly including the use of convolutional neural network (CNN). However, these methods are still not ideal, and shortcomings have been found in the results of some models of EEG feature extraction and classification. In this study, two CNN models were selected for the extraction and classification of preprocessed data, namely, common spatial patterns- (CSP-) CNN and wavelet transform- (WT-) CNN. Using the CSP-CNN, we first used the common space model to reduce dimensionality and then applied the CNN directly to extract and classify the features of the EEG; while, with the WT-CNN model, we used the wavelet transform to extract EEG features, thereafter applying the CNN for classification. The EEG classification results of these two classification models were subsequently analyzed and compared, with the average classification accuracy of the CSP-CNN model found to be 80.56%, and the average classification accuracy of the WT-CNN model measured to 86.90%. Thus, the findings of this study show that the average classification accuracy of the WT-CNN model was 6.34% higher than that of the CSP-CNN.


2020 ◽  
Author(s):  
Eleonora De Filippi ◽  
Mara Wolter ◽  
Bruno Melo ◽  
Carlos J. Tierra-Criollo ◽  
Tiago Bortolini ◽  
...  

AbstractDuring the last decades, neurofeedback training for emotional self-regulation has received significant attention from both the scientific and clinical communities. However, most studies have focused on broader emotional states such as “negative vs. positive”, primarily due to our poor understanding of the functional anatomy of more complex emotions at the electrophysiological level. Our proof-of-concept study aims at investigating the feasibility of classifying two complex emotions that have been implicated in mental health, namely tenderness and anguish, using features extracted from the electroencephalogram (EEG) signal in healthy participants. Electrophysiological data were recorded from fourteen participants during a block-designed experiment consisting of emotional self-induction trials combined with a multimodal virtual scenario. For the within-subject classification, the linear Support Vector Machine was trained with two sets of samples: random cross-validation of the sliding windows of all trials; and 2) strategic cross-validation, assigning all the windows of one trial to the same fold. Spectral features, together with the frontal-alpha asymmetry, were extracted using Complex Morlet Wavelet analysis. Classification results with these features showed an accuracy of 79.3% on average when doing random cross-validation, and 73.3% when applying strategic cross-validation. We extracted a second set of features from the amplitude time-series correlation analysis, which significantly enhanced random cross-validation accuracy while showing similar performance to spectral features when doing strategic cross-validation. These results suggest that complex emotions show distinct electrophysiological correlates, which paves the way for future EEG-based, real-time neurofeedback training of complex emotional states.Significance statementThere is still little understanding about the correlates of high-order emotions (i.e., anguish and tenderness) in the physiological signals recorded with the EEG. Most studies have investigated emotions using functional magnetic resonance imaging (fMRI), including the real-time application in neurofeedback training. However, concerning the therapeutic application, EEG is a more suitable tool with regards to costs and practicability. Therefore, our proof-of-concept study aims at establishing a method for classifying complex emotions that can be later used for EEG-based neurofeedback on emotion regulation. We recorded EEG signals during a multimodal, near-immersive emotion-elicitation experiment. Results demonstrate that intraindividual classification of discrete emotions with features extracted from the EEG is feasible and may be implemented in real-time to enable neurofeedback.


Author(s):  
Sravanth Kumar Ramakuri ◽  
Chinmay Chakraboirty ◽  
Anudeep Peddi ◽  
Bharat Gupta

In recent years, a vast research is concentrated towards the development of electroencephalography (EEG)-based human-computer interface in order to enhance the quality of life for medical as well as nonmedical applications. The EEG is an important measurement of brain activity and has great potential in helping in the diagnosis and treatment of mental and brain neuro-degenerative diseases and abnormalities. In this chapter, the authors discuss the classification of EEG signals as a key issue in biomedical research for identification and evaluation of the brain activity. Identification of various types of EEG signals is a complicated problem, requiring the analysis of large sets of EEG data. Representative features from a large dataset play an important role in classifying EEG signals in the field of biomedical signal processing. So, to reduce the above problem, this research uses three methods to classify through feature extraction and classification schemes.


Author(s):  
N. Hema Rajini ◽  
R. Bhavani

Computed tomography images are widely used in the diagnosis of ischemic stroke because of its faster acquisition and compatibility with most life support devices. This chapter presents a new approach to automated detection of ischemic stroke using k-means clustering technique which separates the lesion region from healthy tissues and classification of ischemic stroke using texture features. The proposed method has five stages, pre-processing, tracing midline of the brain, extraction of texture features and feature selection, classification and segmentation. In the first stage noise is suppressed using a median filtering and skull bone components of the images are removed. In the second stage, midline shift of the brain is calculated. In the third stage, fourteen texture features are extracted and optimal features are selected using genetic algorithm. In the fourth stage, support vector machine, artificial neural network and decision tree classifiers have been used. Finally, the ischemic stroke region is extracted by using k-means clustering technique.


Sign in / Sign up

Export Citation Format

Share Document