scholarly journals Pen-strep influence macrophage mechanical property and mechano-response to microenvironment

2020 ◽  
Author(s):  
Weikang Zhao ◽  
Buwei Hu ◽  
Xuexiang Zhang ◽  
Pingping Wang

AbstractPenicillin-streptomycin (Pen-strep) is a common antibiotic used to prevent bacterial infection in cell culture and clinical treatment. Current research found pen-strep increased macrophage modulus but limited influence on cell adhesion. Phalloidin statin image indicates pen-strep mediate cell morphology on different extracellular matrix coated surface. The roundness analyzes further illustrated pen-strep promote cell spread on PDMS rubber, type I collagen, laminin, poly amino acid, poly-RGD peptides. Finally, YAP-1 and TAZ upregulation and β1 integrin downregulation may be the causes of cell elasticity and mechano-response to extracellular matrix (ECM) change.

2001 ◽  
Vol 169 (2) ◽  
pp. 347-360 ◽  
Author(s):  
C Huet ◽  
C Pisselet ◽  
B Mandon-Pepin ◽  
P Monget ◽  
D Monniaux

The extracellular matrix (ECM), constituting the follicular basal lamina and present also between follicular cells and in the follicular fluid, is believed to regulate granulosa cell (GC) function during follicular development. Ovine GCs isolated from small (1-3 mm in diameter) or large (4-7 mm in diameter) antral follicles were cultured on various pure ECM components (type I collagen, fibronectin, laminin), synthetic substrata enhancing (RGD peptides) or impairing (poly 2-hydroxyethylmethacrylate (poly-hema)) cell adhesion, or in the presence of heparin. The effects of these factors, used alone or in combination with IGF-I and/or FSH, were evaluated in terms of GC spread, survival, proliferation and steroidogenesis. When grown on type I collagen (CI) gel, poly-hema or heparin, GCs from both large and small follicles exhibited a round shape and a low proliferation rate. Compared with non-coated plastic substratum as a control, these ECM or synthetic compounds enhanced estradiol secretion and reduced progesterone secretion by large-follicle GCs. In contrast, GCs from both large and small follicles spread extensively on CI coating, fibronectin, laminin and RGD peptides. Fibronectin and laminin dramatically increased the proliferation rate and enhanced survival of GCs from both origins. Moreover, fibronectin, laminin and RGD peptides reduced estradiol secretion by large-follicle GCs. Unexpectedly, CI coating increased estradiol secretion and reduced progesterone secretion by large-follicle GCs, suggesting that type I collagen was able to maintain estradiol secretion independently of GC shape. Finally, GC responsiveness to IGF-I and FSH, in terms of proliferation and steroidogenesis, was generally maintained when cells were grown on ECM components, RGD peptides and in the presence of heparin. However, when large-follicle GCs were grown as non-adherent clusters (as observed on poly-hema) basal and IGF-I- and/or FSH-stimulated progesterone secretions were totally abolished. Overall, this study shows that GC shape, survival, proliferation and steroidogenesis can be modulated in vitro by pure ECM components in a specific and coordinated manner. It is suggested that, in vivo, fibronectin and laminin would sustain follicular development by enhancing the survival and proliferation of GCs, whereas type I collagen might participate in the maintenance of estradiol secretion in large antral follicles.


2011 ◽  
Vol 17 (4) ◽  
pp. 555-562 ◽  
Author(s):  
Christopher G. Wilson ◽  
John W. Stone ◽  
Vennece Fowlkes ◽  
Mary O. Morales ◽  
Catherine J. Murphy ◽  
...  

AbstractLittle is known about how age influences the ways in which cardiac fibroblasts interact with the extracellular matrix. We investigated the deformation of collagen substrates by neonatal and adult rat cardiac fibroblasts in monolayer and three-dimensional (3D) cultures, and quantified the expression of three collagen receptors [discoidin domain receptor (DDR)1, DDR2, and β1 integrin] and the contractile protein alpha smooth muscle actin (α-SMA) in these cells. We report that adult fibroblasts contracted 3D collagen substrates significantly less than their neonate counterparts, whereas no differences were observed in monolayer cultures. Adult cells had lower expression of β1 integrin and α-SMA than neonate cultures, and we detected significant correlations between the expression of α-SMA and each of the collagen receptors in neonate cells but not in adult cells. Consistent with recent work demonstrating age-dependent interactions with myocytes, our results indicate that interactions between cardiac fibroblasts and the extracellular matrix change with age.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1046
Author(s):  
Jorge Martinez ◽  
Patricio C. Smith

Desmoplastic tumors correspond to a unique tissue structure characterized by the abnormal deposition of extracellular matrix. Breast tumors are a typical example of this type of lesion, a property that allows its palpation and early detection. Fibrillar type I collagen is a major component of tumor desmoplasia and its accumulation is causally linked to tumor cell survival and metastasis. For many years, the desmoplastic phenomenon was considered to be a reaction and response of the host tissue against tumor cells and, accordingly, designated as “desmoplastic reaction”. This notion has been challenged in the last decades when desmoplastic tissue was detected in breast tissue in the absence of tumor. This finding suggests that desmoplasia is a preexisting condition that stimulates the development of a malignant phenotype. With this perspective, in the present review, we analyze the role of extracellular matrix remodeling in the development of the desmoplastic response. Importantly, during the discussion, we also analyze the impact of obesity and cell metabolism as critical drivers of tissue remodeling during the development of desmoplasia. New knowledge derived from the dynamic remodeling of the extracellular matrix may lead to novel targets of interest for early diagnosis or therapy in the context of breast tumors.


Biochemistry ◽  
1991 ◽  
Vol 30 (29) ◽  
pp. 7097-7104 ◽  
Author(s):  
Kou Katayama ◽  
Jerome M. Seyer ◽  
Rajendra Raghow ◽  
Andrew H. Kang

1995 ◽  
Vol 269 (1) ◽  
pp. L52-L58 ◽  
Author(s):  
C. A. Partridge

Incubation of bovine pulmonary microvascular endothelial (BPMVE) cells in low O2 content (95% N2-5% CO2) for 4 h increased monolayer permeability to dextran almost twofold and also increased the incidence of intercellular gaps and intracellular actin stress fibers. Hypoxic incubation decreased the extracellular matrix contents of fibronectin and vitronectin, proteins that serve as anchorage points for the endothelial cells. This state was reversed after 24 h of hypoxic incubation, and the BPMVE monolayer permeability to dextran was less than that of normoxic controls. The monolayer had fewer intercellular gaps and stress fibers, and the extracellular matrix contained increased amounts of fibronectin, vitronectin, and type I collagen. These alterations stimulated by 24 h of hypoxic incubation were resolved within 4 h of reoxygenation in room air supplemented with 5% CO2. These studies indicate that incubation of endothelial monolayers in hypoxic conditions first increases and then decreases monolayer permeability, through increased and decreased formation of intercellular gaps.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yasmin ElTahir ◽  
Amna Al-Araimi ◽  
Remya R. Nair ◽  
Kaija J. Autio ◽  
Hongmin Tu ◽  
...  

Abstract Background Brucella is a facultative intracellular pathogen responsible for zoonotic disease brucellosis. Little is known about the molecular basis of Brucella adherence to host cells. In the present study, the possible role of Bp26 protein as an adhesin was explored. The ability of Brucella protein Bp26 to bind to extracellular matrix (ECM) proteins was determined by enzyme-linked immunosorbent assay (ELISA) and biolayer interferometry (BLI). Results ELISA experiments showed that Bp26 bound in a dose-dependent manner to both immobilized type I collagen and vitronectin. Bp26 bound weakly to soluble fibronectin but did not bind to immobilized fibronectin. No binding to laminin was detected. Biolayer interferometry showed high binding affinity of Bp26 to immobilized type I collagen and no binding to fibronectin or laminin. Mapping of Bp26 antigenic epitopes by biotinylated overlapping peptides spanning the entire sequence of Bp26 using anti Bp26 mouse serum led to the identification of five linear epitopes. Collagen and vitronectin bound to peptides from several regions of Bp26, with many of the binding sites for the ligands overlapping. The strongest binding for anti-Bp26 mouse serum, collagen and vitronectin was to the peptides at the C-terminus of Bp26. Fibronectin did not bind to any of the peptides, although it bound to the whole Bp26 protein. Conclusions Our results highlight the possible role of Bp26 protein in the adhesion process of Brucella to host cells through ECM components. This study revealed that Bp26 binds to both immobilized and soluble type I collagen and vitronectin. It also binds to soluble but not immobilized fibronectin. However, Bp26 does not bind to laminin. These are novel findings that offer insight into understanding the interplay between Brucella and host target cells, which may aid in future identification of a new target for diagnosis and/or vaccine development and prevention of brucellosis.


Sign in / Sign up

Export Citation Format

Share Document