scholarly journals Charged Gram-positive species sequester and decrease the potency of pediocin PA-1 in mixed microbial settings

2020 ◽  
Author(s):  
Vikas D. Trivedi ◽  
Nikhil U. Nair

AbstractAntimicrobial peptides (AMPs) have gained attention recently due to increasing antibiotic resistance amongst pathogens. Most AMPs are cationic in nature and their preliminary interactions with the negatively charged cell surface is mediated by electrostatic attraction. This is followed by pore formation, which is either receptor-dependent or -independent and leads to cell death. Typically, AMPs are characterized by their killing activity using bioactivity assays to determine host range and degree of killing. However, cell surface binding is independent from killing. Most of the studies performed to-date have attempted to quantify the peptide binding using artificial membranes. Here, we use the narrow-spectrum class IIa bacteriocin AMP pediocin PA-1 conjugated to a fluorescent dye as a probe to monitor cell surface binding. We developed a flow cytometry-based assay to quantify the strength of binding in target and non-target species. Through our binding assays, we found a strong positive correlation between cell surface charge and pediocin PA-1 binding. Interestingly, we also found inverse correlation between zeta potential and pediocin PA-1 binding, the correlation coefficient for which improved when only Gram-positives were considered. We also show the effect of the presence of protein, salt, polycationic species, and other non-target species on the binding of pediocin PA-1 to the target organism. We conclude that the of presence of highly charged non-target species, as well as solutes, can decrease the binding, and the apparent potency, of pediocin PA-1. Thus, these outcomes are highly significant to the use of pediocin PA-1 and related AMPs in mixed microbial settings such as those found in the gut microbiota.

Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 501
Author(s):  
Md. Ashrafuzzaman ◽  
Zahid Khan ◽  
Ashwaq Alqarni ◽  
Mohammad Alanazi ◽  
Mohammad Shahabul Alam

Chemotherapy drugs (CDs) disrupt the lipid membrane’s insulation properties by inducing stable ion pores across bilayer membranes. The underlying molecular mechanisms behind pore formation have been revealed in this study using several methods that confirm molecular interactions and detect associated energetics of drugs on the cell surface in general and in lipid bilayers in particular. Liposome adsorption and cell surface binding of CD colchicine has been demonstrated experimentally. Buffer dissolved CDs were considerably adsorbed in the incubated phospholipid liposomes, measured using the patented ‘direct detection method’. The drug adsorption process is regulated by the membrane environment, demonstrated in cholesterol-containing liposomes. We then detailed the phenomenology and energetics of the low nanoscale dimension cell surface (membrane) drug distribution, using atomic force microscopy (AFM) imaging what addresses the surface morphology and measures adhesion force (reducible to adhesive energy). Liposome adsorption and cell surface binding data helped model the cell surface drug distribution. The underlying molecular interactions behind surface binding energetics of drugs have been addressed in silico numerical computations (NCs) utilizing the screened Coulomb interactions among charges in a drug–drug/lipid cluster. Molecular dynamics (MD) simulations of the CD-lipid complexes detected primarily important CD-lipid electrostatic and van der Waals (vdW) interaction energies. From the energetics point of view, both liposome and cell surface membrane adsorption of drugs are therefore obvious findings. Colchicine treated cell surface AFM images provide a few important phenomenological conclusions, such as drugs bind generally with the cell surface, bind independently as well as in clusters of various sizes in random cell surface locations. The related adhesion energy decreases with increasing drug cluster size before saturating for larger clusters. MD simulation detected electrostatic and vdW and NC-derived charge-based interactions explain molecularly of the cause of cell surface binding of drugs. The membrane binding/association of drugs may help create drug–lipid complexes with specific energetics and statistically lead to the creation of ion channels. We reveal here crucial molecular understanding and features of the pore formation inside lipid membranes that may be applied universally for most of the pore-forming existing agents and novel candidate drugs.


1993 ◽  
Vol 268 (7) ◽  
pp. 5279-5284
Author(s):  
B.S. Weeks ◽  
K. Desai ◽  
P.M. Loewenstein ◽  
M.E. Klotman ◽  
P.E. Klotman ◽  
...  

1991 ◽  
Vol 266 (28) ◽  
pp. 18655-18659 ◽  
Author(s):  
P.F. Blackmore ◽  
J. Neulen ◽  
F. Lattanzio ◽  
S.J. Beebe

1994 ◽  
Vol 304 (1) ◽  
pp. 263-269 ◽  
Author(s):  
R V Ward ◽  
S J Atkinson ◽  
J J Reynolds ◽  
G Murphy

We report that the isolated C-terminal domain of progelatinase A is inhibitory to the activation of this proenzyme by primary skin fibroblast plasma membranes but is unable to inhibit organomercurial-induced self-cleavage and activation. Ligand binding studies demonstrate that fibroblasts stimulated with concanavalin A to activate progelatinase A have a significantly enhanced level of cell surface-associated progelatinase A. Tissue inhibitor of metalloproteinases-2 (TIMP-2), an effective inhibitor of membrane-mediated progelatinase A activation, is able to abolish the enhanced level of cell surface-associated progelatinase A that occurs following stimulation. TIMP-1, a poor inhibitor of membrane activation, is unable to inhibit the cell surface binding of progelatinase A. The enhancement in the binding of 125I-progelatinase A to fibroblasts following concanavalin A stimulation can be blocked by the inclusion of excess C-terminal gelatinase A but not by a truncated form of gelatinase A lacking the C-terminal domain. Scatchard analysis of the binding of 125I-progelatinase A to concanavalin A-stimulated fibroblasts has identified 950,000 gelatinase binding sites per cell with a Kd of 1.3 x 10(-8) M. Analysis of non-stimulated fibroblasts has identified 500,000 sites per cell with a Kd of 2.6 x 10(-8) M. We propose that membrane-mediated activation of progelatinase A involves binding of the proenzyme through its C-terminal domain to the cell surface and that TIMP-2 can inhibit activation by interaction with progelatinase A through the C-terminal domain, thus preventing binding of the proenzyme.


Development ◽  
1989 ◽  
Vol 105 (4) ◽  
pp. 795-802
Author(s):  
S.L. Goodman ◽  
R. Deutzmann ◽  
V. Nurcombe

The specific interaction of embryonal cells with the extracellular matrix (ECM) is one of the principal forces influencing embryonal development (Hay, 1984; Trinkaus, 1984). We used a muscle satellite cell line (MM14dy) to determine the relationship between locomotory response to laminin and the expression of specific cell surface binding sites for it. Time lapse videomicroscopic analysis was used to study the locomotory response and radioligand binding assays and cell attachment assays were used to follow the expression levels of binding sites for laminin and its subfragments E8 and E1–4. We report here the novel finding that the ability of MM14dy to locomote over laminin diminishes and finally vanishes as the cells differentiate. The simultaneous drop in expression of binding sites for laminin is interpreted as being of potential significance during development and repair.


Sign in / Sign up

Export Citation Format

Share Document