scholarly journals The number of growing microtubules and nucleus-nucleus interactions uniquely regulate nuclear movement in Drosophila muscle

2020 ◽  
Author(s):  
Mary Ann Collins ◽  
L. Alexis Coon ◽  
Riya Thomas ◽  
Torrey R. Mandigo ◽  
Elizabeth Wynn ◽  
...  

ABSTRACTNuclear movement is a fundamental process of eukaryotic cell biology. Skeletal muscle presents an intriguing model to study nuclear movement because its development requires the precise positioning of multiple nuclei within a single cytoplasm. Furthermore, there is a high correlation between aberrant nuclear positioning and poor muscle function. Although many genes that regulate nuclear movement have been identified, the mechanisms by which these genes act is not known. Using Drosophila melanogaster muscle development as a model system, and a combination of live-embryo microscopy and laser ablation of nuclei, we have found that phenotypically similar mutants are based in different molecular disruptions. Specifically, ensconsin (Drosophila MAP7) regulates the number of growing microtubules that are used to move nuclei whereas bocksbeutel (Drosophila emerin) and klarsicht (Drosophila KASH-protein regulate interactions between nuclei.

2021 ◽  
pp. mbc.E21-06-0324
Author(s):  
Mary Ann Collins ◽  
L. Alexis Coon ◽  
Riya Thomas ◽  
Torrey R. Mandigo ◽  
Elizabeth Wynn ◽  
...  

Nuclear movement is a fundamental process of eukaryotic cell biology. Skeletal muscle presents an intriguing model to study nuclear movement because its development requires the precise positioning of multiple nuclei within a single cytoplasm. Furthermore, there is a high correlation between aberrant nuclear positioning and poor muscle function. Although many genes that regulate nuclear movement have been identified, the mechanisms by which these genes act is not known. Using Drosophila melanogaster muscle development as a model system, and a combination of live-embryo microscopy and laser ablation of nuclei, we have found that clustered nuclei encompass at least two phenotypes that are caused by distinct mechanisms. Specifically, Ensconsin is necessary for productive force production to drive any movement of nuclei whereas Bocksbeutel and Klarsicht are necessary to form distinct populations of nuclei that move to different cellular locations. Mechanisitcally, Ensconsin regulates the number of growing microtubules that are used to move nuclei whereas Bocksbeutel and Klarsicht regulate interactions between nuclei. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text]


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Thomas N. O’Connor ◽  
Jacob G. Kallenbach ◽  
Joe V. Chakkalakal ◽  
Robert T. Dirksen

Proper skeletal muscle development, maintenance, and function is necessary for movement. Decline in muscle function with age and disease is directly associated with a diminished quality of life. Radiation therapy is commonly used to treat certain forms of childhood cancer based on the cytotoxic effects of radiation on cancerous tissue. However, the adverse effects elicited by radiation are not always constrained to the diseased tissue and can accelerate muscle wasting and decline, which is particularly detrimental to juvenile cancer survivors. Exercise is effective at limiting muscle decline and improving muscle function in various diseases. Thus, we hypothesized 1 mo of voluntary endurance exercise following juvenile radiation treatment will reduce muscle damage and restore functional deficits that occur following radiation. Here, we show that following juvenile radiation, 1 mo of voluntary wheel running significantly improved muscle function in mice by promoting adaptations in intracellular calcium handling, improving mitochondrial turnover and reducing oxidative stress resulting from radiation-induced mitochondrial damage. These findings help guide caregivers in their approach to childhood cancer survivor recovery and have implications for other diseases where similar mechanisms of calcium handling and mitochondrial function are disrupted.


2012 ◽  
Vol 123 (11) ◽  
pp. 611-625 ◽  
Author(s):  
Katarzyna Goljanek-Whysall ◽  
Dylan Sweetman ◽  
Andrea E. Münsterberg

miRNAs (microRNAs) are novel post-transcriptional regulators of gene expression. Several miRNAs, expressed exclusively in muscle, play important roles during muscle development, growth and regeneration; other ubiquitously expressed miRNAs are also essential for muscle function. In the present review, we outline the miRNAs involved in embryonic muscle development and those that have been found to be dysregulated in diseases associated with skeletal muscle or are changed during muscle adaptation. miRNAs are promising biomarkers and candidates for potential therapeutic intervention. We discuss the strategies that aim to develop novel therapies through modulating miRNA activity. In time, some of these approaches may become available to treat muscle-associated diseases.


2020 ◽  
Author(s):  
Arne D. Hofemeier ◽  
Tamara Limon ◽  
Till M. Muenker ◽  
Bernhard Wallmeyer ◽  
Alejandro Jurado ◽  
...  

AbstractThe mechanical properties and tension of muscle tissue are tightly related to proper skeletal muscle function, which makes experimental access to the biomechanics of muscle tissue development a key requirement to advance our understanding of muscle function and development. Recently developed elastic in vitro culture chambers allow for raising 3D muscle tissue under controlled conditions and measurements of tissue force generation. However, these chambers are inherently incompatible with high resolution microscopy limiting their usability to global force measurements, and preventing the exploitation of modern fluorescence based investigation methods for live and dynamic measurements. Here we present a new chamber design pairing global force measurements, quantified from post deflection, with local tension measurements obtained from elastic hydrogel beads embedded in the muscle tissue. High resolution 3D video microscopy of engineered muscle development, enabled by the new chamber, shows an early mechanical tissue homeostasis that remains stable in spite of continued myotube maturation.


Author(s):  
C. Uphoff ◽  
C. Nyquist-Battie ◽  
T.B. Cole

Ultrastructural alterations of skeletal muscle have been observed in adult chronic alcoholic patients. However, no such study has been performed on individuals prenatally exposed to ethanol. In order to determine if ethanol exposure in utero in the latter stages of muscle development was deleterious, skeletal muscle was obtained from newborn guinea pigs treated in the following manner. Six Hartly strain pregnant guinea pigs were randomly assigned to either the ethanol or the pair-intubated groups. Twice daily the 3 ethanol-treated animals were intubated with Ensure (Ross Laboratories) liquid diet containing 30% ethanol (6g/Kg pre-pregnant body weight per day) from day 35 of gestation until parturition at day 70±1 day. Serum ethanol levels were determined at 1 hour post-intubation by the Sigma alcohol test kit. For pair-intubation the Ensure diet contained sucrose substituted isocalorically for ethanol. Both food and water intake were monitored.


Sign in / Sign up

Export Citation Format

Share Document