scholarly journals Zika virus-based immunotherapy enhances long-term survival of rodents with brain tumors through upregulation of memory T-cells

2020 ◽  
Author(s):  
Andrew T. Crane ◽  
Matthew R. Chrostek ◽  
Venkatramana D. Krishna ◽  
Maple Shiao ◽  
Nikolas G. Toman ◽  
...  

AbstractZika virus (ZIKV) exhibits a tropism for brain tumor cells and has been used as an oncolytic virus to target brain tumors in mice with modest effects on extending median survival. Recent studies have highlighted the potential for combining virotherapy and immunotherapy to target cancer. We postulated that ZIKV could be used as an adjuvant to enhance the long-term survival of mice with malignant glioblastoma and generate memory T-cells capable of providing long-term immunity against cancer remission. To test this hypothesis mice bearing malignant intracranial GL261 tumors were subcutaneously vaccinated with irradiated GL261 cells previously infected with the ZIKV. Mice also received intracranial injections of live ZIKV, irradiated ZIKV, or irradiated GL261 cells previously infected with ZIKV. Long-term survivors were rechallenged with a second intracranial tumor to examine their immune response and look for the establishment of protective memory T-cells. Mice with subcutaneous vaccination plus intracranial irradiated ZIKV or intracranial irradiated GL261 cells previously infected with ZIKV exhibited the greatest extensions to overall survival. Flow cytometry analysis of immune cells within the brains of long-term surviving mice after tumor rechallenge revealed an upregulation in the levels of T-cells, including CD4+ and tissue-resident memory CD4+ T-cells, in comparison to long-term survivors that were mock-rechallenged, and in comparison to naïve untreated mice challenged with intracranial gliomas. These results suggest that ZIKV can serve as an adjuvant to subcutaneous tumor vaccines that enhance long-term survival and generate protective tissue-resident memory CD4+ T-cells.

PLoS ONE ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. e0232858 ◽  
Author(s):  
Andrew T. Crane ◽  
Matthew R. Chrostek ◽  
Venkatramana D. Krishna ◽  
Maple Shiao ◽  
Nikolas G. Toman ◽  
...  

2017 ◽  
Vol 4 (S) ◽  
pp. 12
Author(s):  
Koji Yasutomo

T cells recognize an antigen presented by self-MHC, and the part of initially activated T cells differentiate toward memory T cells. T cells also recognize cancer cells leading to generation of memory T cells against cancer-derived antigens although the activity of T cells are frequently suppressed by various factors. The release from T cell inhibitory factors could allow T cells to respond to cancer cells. However, it remains unclear which molecules are required for long-term survival of memory T cells and generation of memory T cells against cancer cells. Notch functions as a regulator for fate decision, activation and survival of immune cells. We have demonstrated the roles of Notch in mature T cell differentiation and found that Notch signaling is essential for the maintenance of memory CD4 T cells. The inhibition of Notch disturbs the survival of memory CD4 T cells. The effect of Notch on T cell survival depended on glucose uptake through cell surface Glut1 expression. We revealed that Notch is crucial for the long-term survival of memory T cells against cancer cells and suppression of Notch signaling reduced the tumor antigen-specific killing of cancer cells. Those data demonstrate that Notch is pivotal for the maintenance of memory T cells against cancer cells and suggest that activation of Notch signaling might be advantageous to cancer immunotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hassan Sadozai ◽  
Animesh Acharjee ◽  
Serenella Eppenberger-Castori ◽  
Beat Gloor ◽  
Thomas Gruber ◽  
...  

Background: The aggressive biology and treatment refractory nature of pancreatic ductal adenocarcinoma (PDAC) significantly limits long-term survival. Examining the tumor microenvironment (TME) of long-term survivors (LTS) of PDAC offers the potential of unveiling novel biological insights and therapeutic targets.Methods: We performed an integrated approach involving immunophenotyping, stromal scoring and histomorphological profiling of a cohort of 112 PDAC-cases, including 25 long-term survivors (LTSs, OS ≥ 60 months). Mutational frequencies were assessed using targeted next generation sequencing. Finally, we validated our findings in silico using an external cohort of microarray data from PDAC patients.Results: LTS cases exhibit a largely quiescent population of cancer-associated fibroblasts (CAFs). Immune profiling revealed key differences between LTS and NON-LTS cases in the intratumoral and stromal compartments. In both compartments, LTS cases exhibit a T cell inflamed profile with higher density of CD3+ T cells, CD4+ T cells, iNOS+ leukocytes and strikingly diminished numbers of CD68+ total macrophages, CD163+ (M2) macrophages and FOXP3+ Tregs. A large proportion of LTS cases exhibited tertiary lymphoid tissue (TLT) formation, which has been observed to be a positive prognostic marker in a number of tumor types. Using a Random-Forest variable selection approach, we identified the density of stromal iNOS+ cells and CD68+ cells as strong positive and negative prognostic variables, respectively. In an external cohort, computational cell-type deconvolution revealed a higher abundance of T cells, B lymphocytes and dendritic cells (DCs) in patients with long-term OS compared to short-term survivors. Thus, in silico profiling of long-term survivors in an external cohort, strongly corroborated the T cell-inflamed TME observed in our LTS group.Conclusions: Collectively, our findings highlight the prognostic importance of TME profiles in PDAC, underlining the crucial role of tumor associated macrophages (TAMs) and the potential interdependence between immunosuppressive TAMs and activated CAFs in pancreatic cancer. Additionally, our data has potential for precision medicine and patient stratification. Patients with a T cell inflamed TME might derive benefit from agonistic T cell antibodies (e.g., OX40 or CD137 agonists). Alternately, patients with activated CAFs and high infiltration of immunosuppressive TAMs are highly likely to exhibit therapeutic responses to macrophage targeted drugs (e.g., anti-CSF1R) and anti-CAF agents.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14048-e14048
Author(s):  
Fei Wang ◽  
Nan Zhao ◽  
Chi Lin ◽  
Chi Zhang

e14048 Background: Glioblastoma (GBM) is the most aggressive and most common primary central nervous system cancer in adults. Blocking the interaction between Programmed Cell Death Protein-1 (PD-1) and its ligand (PD-L1) has shown remarkable success in the treatment of several cancers. However, many challenges remain in improving the efficacy of using monoclonal antibodies (Ab) against the receptor PD-1 in GBM, mainly due to the “non-immunogenic” tumor characteristics of GBM. PD-L1 has been found to be overexpressed on the surface of human GBM tumor cells and tumor-associated macrophages (TAM). Radiotherapy (RT), as one of the standard therapy of GBM, could alter the tumor microenvironment and promote an antitumor immune response. We hypothesize that anti-PD-L1 therapy can enhance the RT effects and improve the outcome of treatment when combined. Methods: Using a preclinical orthotropic syngeneic CT-2A mouse GBM tumor model, we studied the efficacy of combined therapy with anti-PD-L1 and RT. Mice were stratified into four treatment groups: control, RT, anti-PD-L1 Ab, and anti-PD-L1 Ab plus RT. RT(8 Gy) was given one time simultaneously with the first dose of anti-PD-L1, followed by systemic anti-PD-L1 maintenance treatment to the mice. Overall survival and tumor growth were monitored. Immunohistochemistry on resected tumors during treatment was performed to characterize the immune response. Single-cell RNA sequencing (scRNA-seq) was also performed to further study the immunologic parameters in the mouse brain. Results: Our results showed that anti-PD-L1 Ab in combination with RT provided a remarkable antitumor immune response and improved overall survival, with 25.5, 34, and 30 days of median survival in control (no-treatment), RT, and anti-PD-L1 groups, respectively, and achieving long-term survival and complete tumor response in 80% of the mice in the anti-PD-L1+RT treatment group (median survival not reached) in GBM tumor-bearing mice. The combined therapy promoted the recruitment of tumor-infiltrating immune cells, reversed the hostile tumor immune environment with a higher M1/TAM ratio, CD8+ /CD4+ T cell ratio, and CD8+ T cell /Treg cell ratio in the tumor area comparing with those parameters in single modality treatment groups. Furthermore, scRNA-seq data demonstrated that anti-PD-L1 combined with RT resulted in robust higher CD8 effector T cells, while lower CD4 and CD8 exhausted T cells in the tumor region compared to other groups. Increased CD4 central memory T cells and CD8 central memory T cells were seen only in tumors treated with anti-PD-L1+RT providing immunologic explanations on the durable control of GBM achieved only by the combined therapy. Conclusions: The anti-PD-L1 therapy synergizes with RT by reversing the hostile tumor immune environment resulting in improved tumor control and long-term survival in the syngeneic mouse GBM model.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2425-2425
Author(s):  
Bindu Kanathezhath ◽  
Myra Mizokami ◽  
Lynne Neumayr ◽  
Hua Guo ◽  
Mark C. Walters ◽  
...  

Abstract Abstract 2425 Poster Board II-402 Introduction: Unrelated cord blood transplantation (CBT) is associated with a risk of graft rejection due in part to a limiting cellular content of the CB unit. Increasing the cellular content of the CB unit mitigates the graft rejection risk, but methods to use adjuvant immuno-modulatory cell co-infusions have also been tested with some success. We have investigated the co-infusion of photochemically (psoralen S59) treated mature donor T lymphocytes in a major histocompatibility complex (MHC) [H2-haplotype] mismatched murine transplant model as a new method to facilitate engraftment of donor CB cells. Methods: We analyzed the rates of donor hematopoietic cell engraftment, graft versus host disease (GVHD), and long-term survival in H2 haplotype disparate (C57BL/6®AKR) mice after CBT. Three different experimental groups were transplanted after sublethal radiation. Group 1 received allogeneic full term newborn peripheral blood alone, group 2 was transplanted with the same donor cells and unmanipulated donor T cells, and group 3 was transplanted with the similar donor cells and psoralen (S-59) treated donor T cells. Results: We observed a low rate of donor engraftment after transplantation with cord blood alone (Group 1). There was better engraftment but a high rate of fatal GVHD after transplantation with cord blood and unmodified donor T-cells (Group 2). The best results were observed after transplantation with 3 × 106 nucleated cord blood cells and 9 ×106 S-59 treated T cells (Group 3b). The engraftment rate was 75% compared to 12.5% after transplantation with 6 × 106 CB cells alone (p=0.04). The long-term survival in group 3 was 100% and the rate and severity of GVHD were minimal. Engraftment observed after CBT with unmodified donor T-cells (group 2) was accompanied by severe GVHD and poor survival. Donor myeloid, B cells and T cells were documented in the spleen and bone marrow of Group 3 mice by 30 days after CBT, although full hematological recovery was delayed until 50-60 days after CBT. Conclusions: These results show improved cord blood engraftment kinetics across a disparate H2 haplotype by adding psoralen-treated donor T lymphocytes. Co-transplantation of psoralen treated lymphocytes with CB cells facilitated durable engraftment of donor MHC high/c-kit+ cells in the marrow and splenic compartments with complete but delayed hematopoietic recovery. The low GVHD risk and excellent long-term survival observed in this murine model suggests the potential for clinical application. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 966-966 ◽  
Author(s):  
Marco Ruella ◽  
David Barrett ◽  
Saad S. Kenderian ◽  
Olga Shestova ◽  
Ted J. Hofmann ◽  
...  

Abstract Relapsing/refractory (r/r) B-cell Acute Lymphoblastic Leukemia (ALL) is associated with a poor prognosis in both pediatric and adult patients. Novel therapies targeting CD19 on leukemic blasts, such as anti-CD19 Chimeric Antigen Receptor T cells (CART19, CTL019) or bi-specific anti-CD19/CD3 antibodies (blinatumomab) induce significant responses in this population. However, CD19-negative relapses have been reported in 5-10% of patients following CART19 or blinatumomab therapies. This is likely due to selective pressure on leukemia sub-clones by these potent anti-CD19 agents. Hence, novel effective immunotherapies are needed in order to treat these patients. In order to identify potential additional B-ALL antigens, samples from 20 r/r patients (including two that relapsed with CD19-negative disease after treatment with CART19 therapy) were screened using a custom Quantigene RNA panel (Affymetrix) and expression on cell surface was confirmed by multiparametric flow cytometry. The IL-3 receptor α (CD123) was one of the most highly and homogeneously expressed antigens in the blasts of 16/20 r/r ALL patients, and 2/2 CD19-negative relapses. Therefore, we sought to investigate the role of CART targeting CD123 (CART123) against r/r B-ALL, focusing on treating patients with CD19-negative relapses after prior anti-CD19 directed therapy. CART123 was shown to be effective in eradicating acute myeloid leukemia in xenograft mouse models but its role in ALL has not been investigated (Gill et al, Blood, 2014). We used a 2nd generation CAR123 construct that comprised a 4-1BB (CD137) co-stimulatory domain. T cells were lentivirally transduced and expanded using anti-CD3/CD28 beads. Head-to-head in vitro comparisons between CART123 and CART19 revealed similar rates of proliferation, CD107a degranulation, cytokine production and cytotoxicity when CART were co-cultured with the CD19+CD123+ B-ALL cell line NALM-6 and with primary B-ALL blasts. For in vivo evaluation, we utilized the primary ALL model that was developed by our group (Barrett et al, Blood, 2011). In this model, primary blasts obtained from ALL patients were passaged in NOD-SCID-γ chain KO (NSG) mice, and transduced with GFP/luciferase. We injected NSG mice with 2 million primary ALL blasts i.v. (CD19+, CD123+) and after engraftment, mice were treated with CART19, CART123 or control untransduced T cells (1 million i.v.). Mice treated with control T cells succumbed quickly to disease, while mice treated with either CART19 or CART123 showed tumor eradication and long term survival (Figure 1). We then evaluated the role of CART123 in the treatment of leukemia obtained from an ALL patient that relapsed with CD19-negative disease after CART19 treatment. Both CART123 and CART19 were incubated with CD19-negative ALL blasts; CART123, but not CART19 resulted in significant degranulation, robust cytokine production, and potent cytotoxicity. To confirm these results in vivo, we established a unique model of CD19-negative B-ALL xenograft. We used primary CD19-negative blasts obtained from a pediatric patient that relapsed after CART19 therapy; CD19-negative blasts were passaged in vivo in NSG mice and stably transduced with GFP/luciferase. Importantly, the blasts retained their CD19-negative phenotype. After engraftment, mice were treated with CART19, CART123 or control T cells. CART19 and control T cells had no anti-tumor activity, while CART123 resulted in a complete eradication of the disease and long term survival in these mice (Figure 2). In conclusion, CART123 represents an important additional approach to treating B-ALL, in particular due to its activity against CD19-negative relapses. Since we have previously shown that treatment with CART123 can lead to myelosuppression, CART123 should be employed to eradicate disease prior to allogeneic transplantation. Future direction may include combining CART123 with CART19 preemptively in order to avoid CD19 antigen escapes. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures Ruella: Novartis: Research Funding. Kenderian:Novartis: Research Funding. Shestova:Novartis: Research Funding. Scholler:Novartis: Research Funding. Lacey:Novartis: Research Funding. Melenhorst:Novartis: Research Funding. Nazimuddin:Novartis: Research Funding. Kalos:Novartis: CTL019 Patents & Royalties, Research Funding. Porter:Novartis: Research Funding. June:Novartis: Patents & Royalties, Research Funding. Grupp:Novartis: Consultancy, Research Funding. Gill:Novartis: Research Funding.


2020 ◽  
Author(s):  
Yasuyuki Kamada ◽  
Koya Hida ◽  
Haruaki Ishibashi ◽  
Shouzou Sako ◽  
Akiyoshi Mizumoto ◽  
...  

Abstract BackgroundCytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) improves survival in selected patients with peritoneal metastasis (PM) from colorectal cancer (CRC). However, little has been reported on characteristics and clinical course of long-term survivors with CRC-PM beyond 5 years. The objective of this study was to describe the clinical and oncological features affecting long-term survival of CRC-PM after comprehensive treatment.MethodsBetween January 1990 and April 2015, CRC-PM patients who underwent CRS with or without HIPEC in two Japanese tertiary hospitals and who survived longer than 5 years after the first CRS for PM were retrospectively investigated. Clinicopathological parameters and therapeutic details involved in long-term survival were reviewed. Patients were defined as cured if the recurrence-free interval was > 5 years after the last operation for metastases.ResultsThirty-three patients with a median peritoneal cancer index (PCI) of 4 (range, 1–27) were included. Complete cytoreduction was achieved in all 33 patients, and none had a rectal primary. Recurrence was observed in 19 patients (57.6%) at a median of 2.6 (range, 0.7–7.4) years. Sixteen patients (48.5%) were considered cured, of whom two never developed re-recurrence after the second surgery. The median PCI of cured group was 2 (range, 1–8).ConclusionsLong-term survival and cure were obtained after CRS in selected patients with CRC-PM. Low PCI, complete cytoreduction, and non-rectal primary are associated with long-term survival and cure in PM from CRC.


2020 ◽  
Author(s):  
Do Weon Lee ◽  
Han-Soo Kim ◽  
Ilkyu Han

Abstract Background: Actuarial survival based on the Kaplan–Meier method can overestimate actual long-term survival, especially among those with factors of poor prognosis. Patients with American Joint Committee on Cancer stage III soft tissue sarcoma (STS) represent a subset with a high risk of STS-specific mortality. Therefore, we aimed to characterize the clinicopathological characteristics associated with actual long-term survival in patients with stage III STS.Methods: We retrospectively reviewed 116 patients who underwent surgical resection for stage III STS with curative intent between March 2000 and December 2013. Long-term survivors (n = 61), defined as those who survived beyond 5 years, were compared with short-term survivors (n = 36), who died of STS within 5 years.Results: Multivariate logistic regression analyses showed that a tumor size <10 cm [odds ratio (OR) 3.95, p = 0.047], histological grade of 2 (OR 8.12, p = 0.004), and American Society of Anesthesiologists (ASA) score of 1 (OR 11.25, p = 0.001) were independently associated with actual 5-year survival. However, 66% of the long-term survivors exhibited factors of poor prognosis: 36% had a tumor size >10 cm and 48% had a histological grade of 3. Leiomyosarcoma (3 of 10) was negatively associated with actual long-term survival.Conclusions: Actual 5-year survival after resection of stage III STS was associated with tumor size, histological grade, and ASA score. However, majority of the actual 5-year survivors exhibit factors of poor prognosis, suggesting that resection should be offered for a chance of long-term survival in these patients.


Sign in / Sign up

Export Citation Format

Share Document