scholarly journals TAPBPR Promotes Antigen Loading on MHC-I Molecules Using a Peptide Trap

2020 ◽  
Author(s):  
Andrew C. McShan ◽  
Christine A. Devlin ◽  
Giora I. Morozov ◽  
Sarah A. Overall ◽  
Danai Moschidi ◽  
...  

AbstractChaperones tapasin and TAP-binding protein related (TAPBPR) perform the important functions of stabilizing nascent MHC-I molecules (chaperoning) and selecting high affinity peptides in the MHC-I groove (editing). While X-ray and cryo-EM snapshots of MHC-I in complex with TAPBPR and tapasin, respectively, have provided important insights into the peptide-deficient MHC-I groove structure, the molecular mechanism through which these chaperones influence the selection of specific amino acid sequences remains incompletely characterized. Of particular importance is a 16 residue loop in TAPBPR (corresponding to 11 residues in tapasin), which has been proposed to actively compete with incoming peptides by forming direct contacts in the F-pocket of the empty MHC-I groove. Using a deep mutational scanning functional analysis of TAPBPR, we find that important residues for the chaperoning activity are located on the major interaction surfaces with nascent MHC-I molecules, excluding the loop. However, interactions with properly conformed molecules toward peptide editing are influenced by loop mutations, in an MHC-I allele- and peptide-dependent manner. Detailed biophysical characterization by ITC, FP and NMR reveals that the loop does not interact with the peptide-deficient MHC-I groove to compete with incoming peptides, but instead promotes peptide loading by acting as a kinetic trap. Our results suggest that the longer loop of TAPBPR lowers the affinity threshold for peptide selection, to promote loading within subcellular compartments of reduced peptide concentration and to prevent disassembly of high affinity peptide-MHC-I complexes that are transiently interrogated by TAPBPR during editing.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrew C. McShan ◽  
Christine A. Devlin ◽  
Giora I. Morozov ◽  
Sarah A. Overall ◽  
Danai Moschidi ◽  
...  

AbstractChaperones Tapasin and TAP-binding protein related (TAPBPR) perform the important functions of stabilizing nascent MHC-I molecules (chaperoning) and selecting high-affinity peptides in the MHC-I groove (editing). While X-ray and cryo-EM snapshots of MHC-I in complex with TAPBPR and Tapasin, respectively, have provided important insights into the peptide-deficient MHC-I groove structure, the molecular mechanism through which these chaperones influence the selection of specific amino acid sequences remains incompletely characterized. Based on structural and functional data, a loop sequence of variable lengths has been proposed to stabilize empty MHC-I molecules through direct interactions with the floor of the groove. Using deep mutagenesis on two complementary expression systems, we find that important residues for the Tapasin/TAPBPR chaperoning activity are located on a large scaffolding surface, excluding the loop. Conversely, loop mutations influence TAPBPR interactions with properly conformed MHC-I molecules, relevant for peptide editing. Detailed biophysical characterization by solution NMR, ITC and FP-based assays shows that the loop hovers above the MHC-I groove to promote the capture of incoming peptides. Our results suggest that the longer loop of TAPBPR lowers the affinity requirements for peptide selection to facilitate peptide loading under conditions and subcellular compartments of reduced ligand concentration, and to prevent disassembly of high-affinity peptide-MHC-I complexes that are transiently interrogated by TAPBPR during editing.


2020 ◽  
Author(s):  
Andrew McShan ◽  
Christine Devlin ◽  
Giora Morozov ◽  
Sarah Overall ◽  
Danai Moschidi ◽  
...  

Abstract Chaperones Tapasin and TAP-binding protein related (TAPBPR) perform the important functions of stabilizing nascent MHC-I molecules (chaperoning) and selecting high affinity peptides in the MHC-I groove (editing). While X-ray and cryo-EM snapshots of MHC-I in complex with TAPBPR and Tapasin, respectively, have provided important insights into the peptide-deficient MHC-I groove structure, the molecular mechanism through which these chaperones influence the selection of specific amino acid sequences remains incompletely characterized. Based on structural and functional data, a loop sequence of variable lengths has been proposed to stabilize empty MHC-I molecules through direct interactions with the floor of the groove. Using deep mutagenesis on two complementary expression systems, we find that important residues for the Tapasin/TAPBPR chaperoning activity are located on a large scaffolding surface, excluding the loop. Conversely, loop mutations influence TAPBPR interactions with properly conformed MHC-I molecules, relevant for peptide editing. Detailed biophysical characterization by solution NMR, ITC and FP-based shows that the loop hovers above the MHC-I groove to promote the capture of incoming peptides, thereby acting as a trap. Our results suggest that the longer loop of TAPBPR lowers the affinity requirements for peptide selection to facilitate peptide loading under conditions and subcellular compartments of reduced ligand concentration, and to prevent disassembly of high affinity peptide-MHC-I complexes that are transiently interrogated by TAPBPR during editing.


Blood ◽  
1990 ◽  
Vol 75 (4) ◽  
pp. 874-880 ◽  
Author(s):  
AD D'Andrea ◽  
PJ Szklut ◽  
HF Lodish ◽  
EM Alderman

Abstract We have generated four high affinity monoclonal antibodies (MoAbs) to recombinant human erythropoietin (EPO). All four MoAbs immunoprecipitate radioiodinated native EPO, and the concentrations of MoAbs required for maximum binding range from 10 nmol/L to 100 nmol/L. Two MoAbs, designated Group I MoAbs, bind to an epitope within the N- terminal 20 amino acids of EPO and also immunoprecipitate sodium dodecyl sulfate (SDS)-denatured EPO. Two other MoAbs (Group II MoAbs) do not immunoprecipitate SDS-denatured EPO and do not bind to any of the eight endo C fragments of EPO. We first used murine erythroleukemia (MEL) cells to test the MoAbs for inhibition of EPO-receptor binding. MEL cells, although unresponsive to EPO, express 760 high affinity receptors for EPO per cell (Kd = 0.24 nmol/L). To assay our MoAbs, MEL cells were grown as monolayers on fibronectin-coated Petri dishes and incubated at 4 degrees C with radioiodinated EPO. Group I MoAbs do not inhibit binding of radioiodinated EPO to the MEL EPO-receptor, but Group II MoAbs do inhibit binding in a dose-dependent manner. We next examined the neutralization of EPO bioactivity by our MoAbs, using EPO- dependent cell line. Only Group II MoAbs inhibit a newly developed EPO- dependent cell growth, demonstrating that inhibition of EPO-receptor binding correlates with neutralization of EPO bioactivity.


2012 ◽  
Vol 69 (19) ◽  
pp. 3317-3327 ◽  
Author(s):  
Sabine Hulpke ◽  
Maiko Tomioka ◽  
Elisabeth Kremmer ◽  
Kazumitsu Ueda ◽  
Rupert Abele ◽  
...  

1993 ◽  
Vol 120 (6) ◽  
pp. 1393-1403 ◽  
Author(s):  
C Ruppert ◽  
R Kroschewski ◽  
M Bähler

We have identified, characterized and cloned a novel mammalian myosin-I motor-molecule, called myr 1 (myosin-I from rat). Myr 1 exists in three alternative splice forms: myr 1a, myr 1b, and myr 1c. These splice forms differ in their numbers of putative calmodulin/light chain binding sites. Myr 1a-c were selectively released by ATP, bound in a nucleotide-dependent manner to F-actin and exhibited amino acid sequences characteristic of myosin-I motor domains. In addition to the motor domain, they contained a regulatory domain with up to six putative calmodulin/light chain binding sites and a tail domain. The tail domain exhibited 47% amino acid sequence identity to the brush border myosin-I tail domain, demonstrating that myr 1 is related to the only other mammalian myosin-I motor molecule that has been characterized so far. In contrast to brush border myosin-I which is expressed in mature enterocytes, myr 1 splice forms were differentially expressed in all tested tissues. Therefore, myr 1 is the first mammalian myosin-I motor molecule with a widespread tissue distribution in neonatal and adult tissues. The myr 1a splice form was preferentially expressed in neuronal tissues. Its expression was developmentally regulated during rat forebrain ontogeny and subcellular fractionation revealed an enrichment in purified growth cone particles, data consistent with a role for myr 1a in neuronal development.


Sign in / Sign up

Export Citation Format

Share Document