scholarly journals The perfect condition for the rising of superbugs: person-to-person contagion and antibiotic use are the key factors responsible for the positive correlation between antibiotic resistance gene diversity and virulence gene diversity in human metagenomes

Author(s):  
Célia P. F. Domingues ◽  
João S. Rebelo ◽  
Teresa Nogueira ◽  
Joël Pothier ◽  
Francisca Monteiro ◽  
...  

1.AbstractThis study aims to understand the cause of the recent observation that humans with a higher diversity of virulence genes in their metagenomes tend to be precisely those with higher diversity of antibiotic-resistance genes. We simulated the transferring of virulence and antibiotic-resistance genes in a community of interacting people where some take antibiotics. The diversities of the two genes types became positively correlated whenever the contagion probability between two people was higher than the probability of losing resistant genes. However, no such positive correlations arise if no one takes antibiotics. This finding holds even under changes of several simulations’ parameters, such as the relative or total diversity of virulence and resistance genes, the contagion probability between individuals, the loss rate of resistance genes, or the social network type. Because the loss rate of resistance genes may be shallow, we conclude that the contagion between people and antibiotic usage is the leading cause of establishing the positive correlation mentioned above. Therefore, antibiotic use and something as prosaic as the contagion between people may facilitate the emergence of virulent and multi-resistant bacteria in people’s metagenomes with a high diversity of both gene types. These superbugs may then circulate in the community.

Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 605
Author(s):  
Célia P. F. Domingues ◽  
João S. Rebelo ◽  
Joël Pothier ◽  
Francisca Monteiro ◽  
Teresa Nogueira ◽  
...  

Human metagenomes with a high diversity of virulence genes tend to have a high diversity of antibiotic-resistance genes and vice-versa. To understand this positive correlation, we simulated the transfer of these genes and bacterial pathogens in a community of interacting people that take antibiotics when infected by pathogens. Simulations show that people with higher diversity of virulence and resistance genes took antibiotics long ago, not recently. On the other extreme, we find people with low diversity of both gene types because they took antibiotics recently—while antibiotics select specific resistance genes, they also decrease gene diversity by eliminating bacteria. In general, the diversity of virulence and resistance genes becomes positively correlated whenever the transmission probability between people is higher than the probability of losing resistance genes. The positive correlation holds even under changes of several variables, such as the relative or total diversity of virulence and resistance genes, the contamination probability between individuals, the loss rate of resistance genes, or the social network type. Because the loss rate of resistance genes may be shallow, we conclude that the transmission between people and antibiotic usage are the leading causes for the positive correlation between virulence and antibiotic-resistance genes.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ana Belén Flórez ◽  
Ángel Alegría ◽  
Franca Rossi ◽  
Susana Delgado ◽  
Giovanna E. Felis ◽  
...  

Large antibiotic resistance gene pools in the microbiota of foods may ultimately pose a risk for human health. This study reports the identification and quantification of tetracycline- and erythromycin-resistant populations, resistance genes, and gene diversity in traditional Spanish and Italian cheeses, via culturing, conventional PCR, real-time quantitative PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). The numbers of resistant bacteria varied widely among the antibiotics and the different cheese varieties; in some cheeses, all the bacterial populations seemed to be resistant. Up to eight antibiotic resistance genes were sought by gene-specific PCR, six with respect to tetracycline, that is,tet(K),tet(L),tet(M),tet(O),tet(S), andtet(W), and two with respect to erythromycin, that is,erm(B) anderm(F). The most common resistance genes in the analysed cheeses weretet(S),tet(W),tet(M), anderm(B). The copy numbers of these genes, as quantified by qPCR, ranged widely between cheeses (from 4.94 to10.18log⁡10/g). DGGE analysis revealed distinct banding profiles and two polymorphic nucleotide positions fortet(W)-carrying cheeses, though the similarity of the sequences suggests thistet(W) to have a monophyletic origin. Traditional cheeses would therefore appear to act as reservoirs for large numbers of many types of antibiotic resistance determinants.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 230
Author(s):  
Shan Wan ◽  
Min Xia ◽  
Jie Tao ◽  
Yanjun Pang ◽  
Fugen Yu ◽  
...  

In this study, we used a metagenomic approach to analyze microbial communities, antibiotic resistance gene diversity, and human pathogenic bacterium composition in two typical landfills in China. Results showed that the phyla Proteobacteria, Bacteroidetes, and Actinobacteria were predominant in the two landfills, and archaea and fungi were also detected. The genera Methanoculleus, Lysobacter, and Pseudomonas were predominantly present in all samples. sul2, sul1, tetX, and adeF were the four most abundant antibiotic resistance genes. Sixty-nine bacterial pathogens were identified from the two landfills, with Klebsiella pneumoniae, Bordetella pertussis, Pseudomonas aeruginosa, and Bacillus cereus as the major pathogenic microorganisms, indicating the existence of potential environmental risk in landfills. In addition, KEGG pathway analysis indicated the presence of antibiotic resistance genes typically associated with human antibiotic resistance bacterial strains. These results provide insights into the risk of pathogens in landfills, which is important for controlling the potential secondary transmission of pathogens and reducing workers’ health risk during landfill excavation.


2021 ◽  
Author(s):  
Johan Bengtsson-Palme ◽  
Viktor Jonsson ◽  
Stefanie Heß

AbstractIt is generally accepted that intervention strategies to curb antibiotic resistance cannot solely focus on human and veterinary medicine but must also consider environmental settings. While the environment clearly has a role in the transmission of resistant bacteria, it is less clear what role it plays in the emergence of novel types of resistance. It has been suggested that the environment constitutes an enormous recruitment ground for resistance genes to pathogens, but the extent to which this actually happens is unknown. In this study, we built a model framework for resistance emergence and used the available quantitative data on the relevant processes to identify the steps which are limiting the appearance of antibiotic resistance determinants in human or animal pathogens. We also assessed the effect of uncertainty in the available data on the model results. We found that in a majority of scenarios, the environment would only play a minor role in the emergence of novel resistance genes. However, the uncertainty around this role is enormous, highlighting an urgent need of more quantitative data to understand the role of the environment in antibiotic resistance development. Specifically, more data is most needed on the fitness costs of antibiotic resistance gene (ARG) carriage, the degree of dispersal of resistant bacteria from the environment to humans, but also the rates of mobilization and horizontal transfer of ARGs. Quantitative data on these processes is instrumental to determine which processes that should be targeted for interventions to curb development and transmission of resistance.


2016 ◽  
Vol 62 (2) ◽  
pp. 353-359 ◽  
Author(s):  
G Terrance Walker ◽  
Tony J Rockweiler ◽  
Rossio K Kersey ◽  
Kelly L Frye ◽  
Susan R Mitchner ◽  
...  

Abstract BACKGROUND Multiantibiotic-resistant bacteria pose a threat to patients and place an economic burden on health care systems. Carbapenem-resistant bacilli and extended-spectrum β-lactamase (ESBL) producers drive the need to screen infected and colonized patients for patient management and infection control. METHODS We describe a multiplex microfluidic PCR test for perianal swab samples (Acuitas® MDRO Gene Test, OpGen) that detects the vancomycin-resistance gene vanA plus hundreds of gene subtypes from the carbapenemase and ESBL families Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-β-lactamase (NDM), Verona integron-mediated metallo-β-lactamase (VIM), imipenemase metallo-β-lactamase (IMP), OXA-23, OXA-48, OXA-51, CTX-M-1, and CTX-M-2, regardless of the bacterial species harboring the antibiotic resistance. RESULTS Analytical test sensitivity per perianal swab is 11–250 CFU of bacteria harboring the antibiotic resistance genes. Test throughput is 182 samples per test run (1820 antibiotic resistance gene family results). We demonstrate reproducible test performance and 100% gene specificity for 265 clinical bacterial organisms harboring a variety of antibiotic resistance genes. CONCLUSIONS The Acuitas MDRO Gene Test is a sensitive, specific, and high-throughput test to screen colonized patients and diagnose infections for several antibiotic resistance genes directly from perianal swab samples, regardless of the bacterial species harboring the resistance genes.


2021 ◽  
Author(s):  
Ross Stuart McInnes ◽  
Md. Hassan uz-Zaman ◽  
Imam Taskin Alam ◽  
Siu Fung Stanley Ho ◽  
Robert A. Moran ◽  
...  

AbstractIn many low- and middle-income countries antibiotic resistant bacteria spread in the environment due to inadequate treatment of wastewater and the poorly regulated use of antibiotics in agri- and aquaculture. Here we characterised the abundance and diversity of antibiotic-resistant bacteria and antibiotic resistance genes in surface waters and sediments in Bangladesh through quantitative culture of Extended-Spectrum Beta-Lactamase (ESBL)-producing coliforms and shotgun metagenomics. Samples were collected from highly urbanised settings (n = 7), from rural ponds with a history of aquaculture-related antibiotic use (n = 11) and from rural ponds with no history of antibiotic use (n = 6). ESBL-producing coliforms were found to be more prevalent in urban samples than in rural samples. Shotgun sequencing showed that sediment samples were dominated by the phylum Proteobacteria (on average 73.8% of assigned reads), while in the water samples Cyanobacteria (on average 60.9% of assigned reads) were the predominant phylum. Antibiotic resistance genes were detected in all samples, but their abundance varied 1,525-fold between sites, with the highest levels of antibiotic resistance genes being present in urban surface water samples. We identified an IncQ1 sulphonamide resistance plasmid ancestral to the widely studied RSF1010 in one of the urban water samples. The abundance of antibiotic resistance genes was significantly correlated (R2 = 0.73; P = 8.9 × 10−15) with the abundance of bacteria originating from the human gut, which suggests that the release of untreated sewage is a driver for the spread of environmental antibiotic resistance genes in Bangladesh, particularly in highly urbanised settings.ImportanceLow- and middle-income countries (LMICs) have higher burdens of multidrug-resistant infections than high-income countries and there is thus an urgent need to elucidate the drivers of the spread of antibiotic-resistant bacteria in LMICs. Here we study the diversity and abundance of antibiotic resistance genes in surface water and sediments from rural and urban settings in Bangladesh. We found that urban surface waters are particularly rich in antibiotic resistance genes, with a higher number of them associated with plasmids indicating that they are more likely to spread horizontally. The abundance of antibiotic resistance genes was strongly correlated with the abundance of bacteria that originate from the human gut, suggesting that uncontrolled release of human waste is a major driver for the spread of antibiotic resistance in the urban environment. Improvements in sanitation in LMICs may thus be a key intervention to reduce the dissemination of antibiotic resistant bacteria.


mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Christopher J. Harmer ◽  
Robert A. Moran ◽  
Ruth M. Hall

ABSTRACTThe insertion sequence IS26plays a key role in disseminating antibiotic resistance genes in Gram-negative bacteria, forming regions containing more than one antibiotic resistance gene that are flanked by and interspersed with copies of IS26. A model presented for a second mode of IS26movement that explains the structure of these regions involves a translocatable unit consisting of a unique DNA segment carrying an antibiotic resistance (or other) gene and a single IS copy. Structures resembling class I transposons are generated via RecA-independent incorporation of a translocatable unit next to a second IS26such that the ISs are in direct orientation. Repeating this process would lead to arrays of resistance genes with directly oriented copies of IS26at each end and between each unique segment. This model requires that IS26recognizes another IS26as a target, and in transposition experiments, the frequency of cointegrate formation was 60-fold higher when the target plasmid contained IS26. This reaction was conservative, with no additional IS26or target site duplication generated, and orientation specific as the IS26s in the cointegrates were always in the same orientation. Consequently, the cointegrates were identical to those formed via the known mode of IS26movement when a target IS26was not present. Intact transposase genes in both IS26s were required for high-frequency cointegrate formation as inactivation of either one reduced the frequency 30-fold. However, the IS26target specificity was retained. Conversion of each residue in the DDE motif of the Tnp26 transposase also reduced the cointegration frequency.IMPORTANCEResistance to antibiotics belonging to several of the different classes used to treat infections is a critical problem. Multiply antibiotic-resistant bacteria usually carry large regions containing several antibiotic resistance genes, and in Gram-negative bacteria, IS26is often seen in these clusters. A model to explain the unusual structure of regions containing multiple IS26copies, each associated with a resistance gene, was not available, and the mechanism of their formation was unexplored. IS26-flanked structures deceptively resemble class I transposons, but this work reveals that the features of IS26movement do not resemble those of the IS and class I transposons studied to date. IS26uses a novel movement mechanism that defines a new family of mobile genetic elements that we have called “translocatable units.” The IS26mechanism also explains the properties of IS257(IS431) and IS1216, which belong to the same IS family and mobilize resistance genes in Gram-positive staphylococci and enterococci.


2018 ◽  
Author(s):  
Vanessa R. Marcelino ◽  
Michelle Wille ◽  
Aeron C. Hurt ◽  
Daniel González-Acuña ◽  
Marcel Klaassen ◽  
...  

AbstractAntibiotic resistance is rendering common bacterial infections untreatable. Wildlife can incorporate and disperse antibiotic resistant bacteria in the environment, such as water systems, which in turn serve as reservoirs of resistance genes for human pathogens. We used bulk RNA-sequencing (meta-transcriptomics) to assess the diversity and expression levels of functionally active resistance genes in the microbiome of birds with aquatic behavior. We sampled birds across a range of habitats, from penguins in Antarctica to ducks in a wastewater treatment plant in Australia. This revealed 81 antibiotic resistance genes in birds from all localities, including β-lactam, tetracycline and chloramphenicol resistance in Antarctica, and genes typically associated with multidrug resistance plasmids in areas with high human impact. Notably, birds feeding at a wastewater treatment plant carried the greatest resistance gene burden, suggesting that human waste, even if it undergoes treatment, contributes to the spread of antibiotic resistance genes to the wild. Differences in resistance gene burden also reflected the birds’ ecology, taxonomic group and microbial functioning. Ducks, which feed by dabbling, carried a higher abundance and diversity of resistance genes than turnstones, avocets and penguins, that usually prey on more pristine waters. In sum, this study helps to reveal the complex factors explaining the distribution of resistance genes and their exchange routes between humans and wildlife.


Antibiotics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 23 ◽  
Author(s):  
Paula Amador ◽  
Ruben Fernandes ◽  
Cristina Prudêncio ◽  
Isabel Duarte

The exposure of both crop fields and humans to antibiotic-resistant bacteria in animal excreta is an emergent concern of the One Health initiative. This study assessed the contamination of livestock manure from poultry, pig, dairy farms and slaughterhouses in Portugal with resistance determinants. The resistance profiles of 331 Enterobacteriaceae isolates to eight β-lactam (amoxicillin, cefoxitin, cefotaxime, cefpirome, aztreonam, ceftazidime, imipenem and meropenem) and to five non-β-lactam antibiotics (tetracycline (TET), trimethoprim/sulfamethoxazole (SXT), ciprofloxacin (CIP), chloramphenicol (CHL) and gentamicin) was investigated. Forty-nine integron and non-β-lactam resistance genes were also screened for. Rates of resistance to the 13 antibiotics ranged from 80.8% to 0.6%. Multidrug resistance (MDR) rates were highest in pig farm samples (79%). Thirty different integron and resistance genes were identified. These were mainly associated with resistance to CHL (catI and catII), CIP (mainly, qnrS, qnrB and oqx), TET (mainly tet(A) and tet(M)) and SXT (mostly dfrIa group and sul3). In MDR isolates, integron presence and non-β-lactam resistance to TET, SXT and CHL were positively correlated. Overall, a high prevalence of MDR Enterobacteriaceae was found in livestock manure. The high gene diversity for antibiotic resistance identified in this study highlights the risk of MDR spread within the environment through manure use.


Sign in / Sign up

Export Citation Format

Share Document