scholarly journals Functional alteration of innate T cells in critically ill Covid-19 patients

Author(s):  
Youenn Jouan ◽  
Antoine Guillon ◽  
Loïc Gonzalez ◽  
Yonatan Perez ◽  
Stephan Ehrmann ◽  
...  

AbstractCovid-19 can induce lung infection ranging from mild pneumonia to life-threatening acute respiratory distress syndrome (ARDS). Dysregulated host immune response in the lung is a key feature in ARDS pathophysiology. However, cellular actors in Covid-19-driven ARDS are poorly understood. Here, we dynamically analyzed the biology of innate T cells, a heterogeneous class (MAIT, γδT and iNKT cells) of T lymphocytes, presenting potent anti-infective and regulatory functions. Patients presented a compartmentalized lung inflammation paralleled with a limited systemic inflammation. Circulating innate T cells of critically ill Covid-19 patients presented a profound and persistent phenotypic and functional alteration. Highly activated innate T cells were detected in airways of patients suggesting a recruitment to the inflamed site and a potential contribution in the regulation of the local inflammation. Finally, the expression of the CD69 activation marker on blood iNKT and MAIT cells at inclusion was predictive of disease severity. Thus, patients present an altered innate T cell biology that may account for the dysregulated immune response observed in Covid-19-related acute respiratory distress syndrome.

2020 ◽  
Author(s):  
Sandeep Chakraborty

Weissella strains are currently being used for biotechnological and probiotic purposes [1]. While, Weissella hellenica found in flounder intestine had probiotic effects [2], certain species from this genus are opportunistic pathogens in humans. Apart from being implicated in disease in farmed rainbow trout [3], Weissella has been found to cause the following disease in humans.1. endocarditis [4,5]2. bacteraemia [6]3. prosthetic joint infection [7]Whole genome sequences ‘find several virulence determinants such as collagen adhesins, aggregation sub- stances, mucus-binding proteins, and hemolysins in some species’, as well as antibiotic resistance-encoding genes [8]. Caution is warranted in selecting of Weissella strains as starter cultures or probiotics, if at all, since the other option, Lactobacillus, are rarely involved in human disease.Here, the analysis of the lung microbiota in critically ill trauma patients suffering from acute respiratory distress syndrome [9] shows (Accid:ERR1992912) shows complete colonization of Weissella (Fig 1). While, the study mentions ‘significant enrichment of potential pathogens including Streptococcus, Fusobacterium, Prevotella, Haemophilus and Treponema’, there is no reference to the Weissella genus. The percentages of Weissella strains are :confusa=81, soli=7 ,hellenica=5 ,diestrammenae=2. I believe this is the first reported case of Weissella causing ARDS in humans.


2021 ◽  
Vol 10 (13) ◽  
pp. 2935
Author(s):  
Jose Bordon ◽  
Ozan Akca ◽  
Stephen Furmanek ◽  
Rodrigo Silva Cavallazzi ◽  
Sally Suliman ◽  
...  

Acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19) pneumonia is the main cause of the pandemic’s death toll. The assessment of ARDS and time on invasive mechanical ventilation (IMV) could enhance the characterization of outcomes and management of this condition. This is a city-wide retrospective study of hospitalized patients with COVID-19 pneumonia from 5 March 2020 to 30 June 2020. Patients with critical illness were compared with those with non-critical illness. We examined the severity of ARDS and other factors associated with (i) weaning patients off IMV and (ii) mortality in a city-wide study in Louisville, KY. Of 522 patients with COVID-19 pneumonia, 219 (41.9%) were critically ill. Among critically ill patients, the median age was 60 years; 53% were male, 55% were White and 32% were African American. Of all critically ill patients, 52% had ARDS, and 38% of these had severe ARDS. Of the 25% of patients who were weaned off IMV, those with severe ARDS were weaned within eleven days versus five days for those without severe ARDS, p = 0.023. The overall mortality for critically ill patients was 22% versus 1% for those not critically ill. Furthermore, the 14-day mortality was 31% for patients with severe ARDS and 12% for patients without severe ARDS, p = 0.019. Patients with severe ARDS versus non-severe ARDS needed twice as long to wean off IMV (eleven versus five days) and had double the 14-day mortality of patients without severe ARDS.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Steven L. Shein ◽  
Aline B. Maddux ◽  
Margaret J. Klein ◽  
Anoopindar Bhalla ◽  
George Briassoulis ◽  
...  

2020 ◽  
Vol 46 (6) ◽  
pp. 1222-1231 ◽  
Author(s):  
Catherine L. Auriemma ◽  
Hanjing Zhuo ◽  
Kevin Delucchi ◽  
Thomas Deiss ◽  
Tom Liu ◽  
...  

2019 ◽  
Vol 20 (16) ◽  
pp. 4004 ◽  
Author(s):  
Hernández-Beeftink ◽  
Guillen-Guio ◽  
Villar ◽  
Flores

The excessive hospital mortality associated with acute respiratory distress syndrome (ARDS) in adults mandates an urgent need for developing new therapies and tools for the early risk assessment of these patients. ARDS is a heterogeneous syndrome with multiple different pathogenetic processes contributing differently in different patients depending on clinical as well as genetic factors. Identifying genetic-based biomarkers holds the promise for establishing effective predictive and prognostic stratification methods and for targeting new therapies to improve ARDS outcomes. Here we provide an updated review of the available evidence supporting the presence of genetic factors that are predictive of ARDS development and of fatal outcomes in adult critically ill patients and that have been identified by applying different genomic and genetic approaches. We also introduce other incipient genomics approximations, such as admixture mapping, metagenomics and genome sequencing, among others, that will allow to boost this knowledge and likely reveal new genetic predictors of ARDS susceptibility and prognosis among critically ill patients.


Sign in / Sign up

Export Citation Format

Share Document