scholarly journals AtPIG-S, a predicted Glycosylphosphatidylinositol Transamidase Subunit, is critical for pollen tube growth in Arabidopsis

2020 ◽  
Author(s):  
Nick Desnoyer ◽  
Greg Howard ◽  
Emma Jong ◽  
Ravishankar Palanivelu

AbstractBackgroundGlycosylphosphatidylinositol (GPI) addition is one of the several post-translational modifications to proteins that increase their affinity for membranes. In eukaryotes, the GPI transamidase complex (GPI-T) catalyzes the attachment of pre-assembled GPI anchors to GPI-anchored proteins (GAPs) through a transamidation reaction. A mutation in AtGPI8 (gpi8-2), the putative catalytic subunit of GPI-T in Arabidopsis, is transmitted normally through the female gametophyte (FG), indicating the FG tolerates loss of GPI transamidation. In contrast, gpi8-2 almost completely abolishes male gametophyte (MG) function. Still, the unexpected finding that gpi8-2 FGs function normally requires further investigation. Additionally, specific developmental defects in the MG caused by loss of GPI transamidation remain poorly characterized.ResultsHere we investigated the effect of loss of AtPIG-S, another GPI-T subunit, in both gametophytes. Like gpi8-2, we showed that a mutation in AtPIG-S (pigs-1) disrupted synergid localization of LORELEI (LRE), a putative GAP critical for pollen tube reception by the FG, yet is transmitted normally through the FG. Conversely, pigs-1 severely impaired male gametophyte (MG) function during pollen tube emergence and growth in the pistil. A pPIGS:PIGS-GFP transgene complemented these MG defects and enabled generation of pigs-1/pigs-1 seedlings, but seemingly failed to rescue the function of AtPIG-S in the sporophyte, as pigs-1/pigs-1, pPIGS:PIGS-GFP seedlings died soon after germination.ConclusionsCharacterization of pigs-1 provided further evidence that the FG tolerates loss of GPI transamidation more than the MG and that the MG compared to the FG may be a better haploid system to study the role of GPI-anchoring. pigs-1 pollen develops normally and thus represent a tool in which GPI anchor biosynthesis and transamidation of GAPs have been uncoupled, offering a potential way to study free GPI in plant development. While previously reported male fertility defects of GPI biosynthesis mutants could have been due either to loss of GPI or GAPs lacking the GPI anchor, our results clarified that the loss of mature GAPs underlie male fertility defects of GPI-deficient pollen grains, as pigs-1 is defective only in the downstream transamidation step. Our study also provided further evidence that GPI transamidation is essential in seedling development.

2021 ◽  
Vol 74 ◽  
Author(s):  
Thomas Sawidis ◽  
Gülriz Baycu ◽  
Elżbieta Weryszko-Chmielewska ◽  
Aneta Sulborska

Abstract In vitro culture of Lilium longiflorum pollen grains was carried out to determine the role of manganese in pollen germination and pollen tube growth. Pollen germination was adversely affected by the presence of manganese (>10 −8 M), whereas low concentrations (10 −12 –10 −10 M) stimulated the process. Manganese caused morphological anomalies during tube growth, characterized by irregular pollen tube thickening and swollen tips. The main effect was the anomalous cell wall formation at the tip, in which the presence of several organelles reduced the number of secretory vesicles. A loose network of fibrillar material and spherical aggregates, mostly in the tip region, was detected, and this material was progressively loosened into the surrounding medium. As a response to potential toxicity, the excess manganese was isolated in vacuoles, which formed an internal barrier against penetration of manganese to the tip area. Elevated manganese concentrations might affect plant reproduction, resulting in anomalies in gamete development. Consequently, the loss in genetic diversity and decreased fruit set ultimately lower yield.


2011 ◽  
Vol 72 (1) ◽  
pp. 25-35 ◽  
Author(s):  
Joanna Ślusarczyk ◽  
Andrzej Wierzbicki ◽  
Marcin Przewłoka ◽  
Teresa Tykarska ◽  
Andrzej Jerzmanowski ◽  
...  

As continuation of investigations in to the mechanism of the role of the H1 histone, which is a crucial protein component chromosomes of all eukaryotes, transgenic tobacco plants with different levels of the H1 histone variants were examined. Tobacco has six sequential variants of the H1 histone: two major ones (H1A and H1B), constituting ca. 90% of all H1, and four minor ones (H1C, H1D, H1E and H1F), occurring in very small quantities. The following groups of plants were examined: K - control group with a full set of histone variants; -AB -with the A and B variants removed; -ABCD - with the A, B, C and D variants removed; and -CD - with the C and D variants removed. The analysis of microsporogenesis in those plants, based on preparations squeezed in acetoorcein, revealed the asynchronous course of meiosis in -AB and -ABCD plants, occurrence of chromosomal aberration, and, consequently, the formation of sterile pollen grains (accordingly: 84,4% and 81,4%). In -CD plants, the percentage of aberration and sterile pollen grains was similar to the control material. Electron microscope observations of microsporogenesis showed ultrastructural changes. In -AB and -ABCD plants, a major portion of the pollen grains were degraded. The smallest number of degraded pollen grains, in comparison with the control, was found in the -CD group.


Genetics ◽  
2001 ◽  
Vol 158 (4) ◽  
pp. 1773-1783 ◽  
Author(s):  
Antonia Procissi ◽  
Solveig de Laissardière ◽  
Madina Férault ◽  
Daniel Vezon ◽  
Georges Pelletier ◽  
...  

Abstract Mutant analysis represents one of the most reliable approaches to identifying genes involved in plant development. The screening of the Versailles collection of Arabidopsis thaliana T-DNA insertion transformants has allowed us to isolate different mutations affecting male gametophytic functions and viability. Among several mutated lines, five have been extensively studied at the genetic, molecular, and cytological levels. For each mutant, several generations of selfing and outcrossing have been carried out, leading to the conclusion that all these mutations are tagged and affect only the male gametophyte. However, only one out of the five mutations is completely penetrant. A variable number of T-DNA copies has integrated in the mutant lines, although all segregate at one mutated locus. Two mutants could be defined as “early mutants”: the mutated genes are presumably expressed during pollen grain maturation and their alteration leads to the production of nonfunctional pollen grains. Two other mutants could be defined as “late mutant” since their pollen is able to germinate but pollen tube growth is highly disturbed. Screening for segregation ratio distortions followed by thorough genetic analysis proved to be a powerful tool for identifying gametophytic mutations of all phases of pollen development.


2021 ◽  
Author(s):  
César Bernat-Silvestre ◽  
Judit Sanchez-Simarro ◽  
Yingxuan Ma ◽  
Kim Johnson ◽  
Fernando Aniento ◽  
...  

ABSTRACTGPI-anchored proteins (GPI-APs) play an important role in a variety of plant biological processes including growth, stress response, morphogenesis, signalling and cell wall biosynthesis. The GPI-anchor contains a lipid-linked glycan backbone that is synthesized in the endoplasmic reticulum (ER) where it is subsequently transferred to the C-terminus of proteins containing a GPI signal peptide by a GPI transamidase. Once the GPI anchor is attached to the protein, the glycan and lipid moieties are remodelled. In mammals and yeast, this remodelling is required for GPI-APs to be included in Coat Protein II (COPII) coated vesicles for their ER export and subsequent transport to the cell surface. The first reaction of lipid remodelling is the removal of the acyl chain from the inositol group by Bst1p (yeast) and PGAP1 (mammals). In this work, we have used a loss-of-function approach to study the role of PGAP1/Bst1 like genes in plants. We have found that Arabidopsis PGAP1 localizes to the ER and probably functions as the GPI inositol-deacylase which cleaves the acyl chain from the inositol ring of the GPI anchor. In addition, we show that PGAP1 function is required for efficient ER export and transport to the cell surface of GPI-APs.One sentence summaryGPI anchor lipid remodeling in GPI-anchored proteins is required for their transport to the cell surface in Arabidopsis.


2019 ◽  
Vol 2 (5) ◽  
pp. e201900459 ◽  
Author(s):  
Kei-ichiro Mishiba ◽  
Yuji Iwata ◽  
Tomofumi Mochizuki ◽  
Atsushi Matsumura ◽  
Nanami Nishioka ◽  
...  

In Arabidopsis, the IRE1A and IRE1B double mutant (ire1a/b) is unable to activate cytoplasmic splicing of bZIP60 mRNA and regulated IRE1-dependent decay under ER stress, whereas the mutant does not exhibit severe developmental defects under normal conditions. In this study, we focused on the Arabidopsis IRE1C gene, whose product lacks a sensor domain. We found that the ire1a/b/c triple mutant is lethal, and heterozygous IRE1C (ire1c/+) mutation in the ire1a/b mutants resulted in growth defects and reduction of the number of pollen grains. Genetic analysis revealed that IRE1C is required for male gametophyte development in the ire1a/b mutant background. Expression of a mutant form of IRE1B that lacks the luminal sensor domain (ΔLD) complemented a developmental defect in the male gametophyte in ire1a/b/c haplotype. In vivo, the ΔLD protein was activated by glycerol treatment that increases the composition of saturated lipid and was able to activate regulated IRE1-dependent decay but not bZIP60 splicing. These observations suggest that IRE1 contributes to plant development, especially male gametogenesis, using an alternative activation mechanism that bypasses the unfolded protein-sensing luminal domain.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Souraya Khouider ◽  
Filipe Borges ◽  
Chantal LeBlanc ◽  
Alexander Ungru ◽  
Arp Schnittger ◽  
...  

AbstractActive DNA demethylation is required for sexual reproduction in plants but the molecular determinants underlying this epigenetic control are not known. Here, we show in Arabidopsis thaliana that the DNA glycosylases DEMETER (DME) and REPRESSOR OF SILENCING 1 (ROS1) act semi-redundantly in the vegetative cell of pollen to demethylate DNA and ensure proper pollen tube progression. Moreover, we identify six pollen-specific genes with increased DNA methylation as well as reduced expression in dme and dme;ros1. We further show that for four of these genes, reinstalling their expression individually in mutant pollen is sufficient to improve male fertility. Our findings demonstrate an essential role of active DNA demethylation in regulating genes involved in pollen function.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1037
Author(s):  
Yena Jung ◽  
Hyewon Bang ◽  
Young-Hyun Kim ◽  
Na-Eun Park ◽  
Young-Ho Park ◽  
...  

To elucidate the functional role of V-set and immunoglobulin domain-containing 1 (VSIG1) in spermatogenesis and fertilization, we knocked out (KO) VSIG1 in a mouse embryo using CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9) -mediated genome editing. Reverse transcription PCR was performed using cDNA synthesized from VSIG1 KO testis RNA. Although Western blot analysis using a specific antibody to VSIG1 confirmed VSIG1 protein defects in the KO mice, hematoxylin-eosin staining analysis was similar in the KO and wild-type mice. Additionally, computer-assisted sperm analysis and in vitro fertilization experiments were conducted to confirm the activity and fertilization ability of sperm derived from the KO mouse. Mice lacking VSIG1 were viable and had no serious developmental defects. As they got older, the KO mice showed slightly higher weight loss, male mice lacking VSIG1 had functional testes, including normal sperm number and motility, and both male and female mice lacking VSIG1 were fertile. Our results from VSIG1 KO mice suggest that VSIG1 may not play essential roles in spermatogenesis and normal testis development, function, and maintenance. VSIG1 in sperm is dispensable for spermatogenesis and male fertility in mice. As several genes are known to possess slightly different functions depending on the species, the importance and molecular mechanism of VSIG1 in tissues of other species needs further investigation.


2018 ◽  
Author(s):  
Daniel A. Cabada Gomez ◽  
M. Isabella Chavez ◽  
Emily Indriolo

AbstractCOPI is a seven subunit coatomer complex, consisting of α, β, β′, γ, δ, ε, and ξ; in A. thaliana, COPI is necessary for retrograde transport from the Golgi to the Endoplasmic Reticulum, Golgi maintenance, and cell-plate formation in plant cells. Vesicle recruitment to the pollen contact point is required for pollen hydration and pollen tube penetration. To determine what other aspects of trafficking may be involved in the stigmatic papillae acceptance of compatible pollen, knock-out lines of several isoforms of the COPI complex were characterized in their roles during compatible pollination. Isoforms that were studied included α1-COPI, β-COPI, β′-COPI, γ-COPI and ε-COPI. Each mutant line was characterized in regards to pollen grain adherence, pollen tube penetration, and seed set. Of the mutant lines examined, α1-copi had the strongest phenotype with issues with compatible pollen grain adherence, tube germination and reduction in seed set while other lines had milder but visible retardation in compatible pollen acceptance. The data presented here are the first study of the role of the COPI complex in compatible pollinations and that certain subunit isoforms are required for compatible pollen acceptance.


2021 ◽  
Vol 40 (2) ◽  
pp. 205-222
Author(s):  
Monica Scali ◽  
Alessandra Moscatelli ◽  
Luca Bini ◽  
Elisabetta Onelli ◽  
Rita Vignani ◽  
...  

AbstractPollen tube elongation is characterized by a highly-polarized tip growth process dependent on an efficient vesicular transport system and largely mobilized by actin cytoskeleton. Pollen tubes are an ideal model system to study exocytosis, endocytosis, membrane recycling, and signaling network coordinating cellular processes, structural organization and vesicular trafficking activities required for tip growth. Proteomic analysis was applied to identifyNicotiana tabacumDifferentially Abundant Proteins (DAPs) after in vitro pollen tube treatment with membrane trafficking inhibitors Brefeldin A, Ikarugamycin and Wortmannin. Among roughly 360 proteins separated in two-dimensional gel electrophoresis, a total of 40 spots visibly changing between treated and control samples were identified by MALDI-TOF MS and LC–ESI–MS/MS analysis. The identified proteins were classified according to biological processes, and most proteins were related to pollen tube energy metabolism, including ammino acid synthesis and lipid metabolism, structural features of pollen tube growth as well modification and actin cytoskeleton organization, stress response, and protein degradation. In-depth analysis of proteins corresponding to energy-related pathways revealed the male gametophyte to be a reliable model of energy reservoir and dynamics.


Sign in / Sign up

Export Citation Format

Share Document