scholarly journals The Starlet Sea Anemone, Nematostella vectensis, possesses body region-specific bacterial associations with spirochetes dominating the capitulum

2020 ◽  
Author(s):  
A. M. Bonacolta ◽  
M. T. Connelly ◽  
S. Rosales ◽  
J. del Campo ◽  
N. Traylor-Knowles

AbstractSampling of different body regions can reveal highly specialized bacterial associations within the holobiont and facilitate identification of core microbial symbionts that would otherwise be overlooked by bulk sampling methods. Here we characterized compartment-specific associations present within the model cnidarian Nematostella vectensis by dividing its morphology into three distinct body regions. This sampling design allowed us to uncover a capitulum-specific dominance of spirochetes within N. vectensis. Bacteria from the family Spirochaetaceae made up 66% of the community in the capitulum, while only representing 1.2% and 0.1% of the communities in the mesenteries and physa, respectively. A phylogenetic analysis of the predominant spirochete sequence recovered from N. vectensis showed a close relation to spirochetes previously recovered from wild N. vectensis. These sequences clustered closer to the recently described genus Oceanispirochaeta, rather than Spirochaeta perfilievii, supporting them as members of this clade. This suggests a consistent and potentially important association between N. vectensis and spirochetes from the order Spirochaetales.

Nematology ◽  
2012 ◽  
Vol 14 (2) ◽  
pp. 185-190 ◽  
Author(s):  
Maribet Gamboa ◽  
Maria Mercedes Castillo ◽  
Ricardo Guerrero

Nematodes of the family Mermithidae are known as endoparasites of freshwater arthropods. Juveniles of Pheromermis sp. (Mermithidae) were found coiled inside stonefly nymphs collected at seven sites in the Guare and Emilia rivers in northern Venezuela. Prevalence in Anacroneuria blanca was 93.2% () and in A. caraca was 91.5% (). In A. blanca, a higher number of juveniles per individual host was observed than in A. caraca, a fact that is probably related to body size. Although parasites were observed in all body regions, the highest incidence occurred in the legs and thorax. Considering the nematode prevalence and intensity of parasitism, we consider individuals of Anacroneuria spp. to be important hosts of Pheromermis in these rivers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
František Vejmělka ◽  
Jan Okrouhlík ◽  
Matěj Lövy ◽  
Gabriel Šaffa ◽  
Eviatar Nevo ◽  
...  

AbstractThe relatively warm and very humid environment of burrows presents a challenge for thermoregulation of its mammalian inhabitants. It was found that African mole-rats dissipate body heat mainly through their venter, and social mole-rats dissipate more body heat compared to solitary species at lower temperatures. In addition, the pattern of the ventral surface temperature was suggested to be homogeneous in social mole-rats compared to a heterogeneous pattern in solitary mole-rats. To investigate this for subterranean rodents generally, we measured the surface temperatures of seven species with different degrees of sociality, phylogeny, and climate using infrared thermography. In all species, heat dissipation occurred mainly through the venter and the feet. Whereas the feet dissipated body heat at higher ambient temperatures and conserved it at lower ambient temperatures, the ventral surface temperature was relatively high in all temperatures indicating that heat dissipation to the environment through this body region is regulated mainly by behavioural means. Solitary species dissipated less heat through their dorsum than social species, and a tendency for this pattern was observed for the venter. The pattern of heterogeneity of surface temperature through the venter was not related to sociality of the various species. Our results demonstrate a general pattern of body heat exchange through the three studied body regions in subterranean rodents. Besides, isolated individuals of social species are less able to defend themselves against low ambient temperatures, which may handicap them if staying alone for a longer period, such as during and after dispersal events.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 41
Author(s):  
Marcos Godoy ◽  
Daniel A. Medina ◽  
Rudy Suarez ◽  
Sandro Valenzuela ◽  
Jaime Romero ◽  
...  

Piscine orthoreovirus (PRV) belongs to the family Reoviridae and has been described mainly in association with salmonid infections. The genome of PRV consists of about 23,600 bp, with 10 segments of double-stranded RNA, classified as small (S1 to S4), medium (M1, M2 and M3) and large (L1, L2 and L3); these range approximately from 1000 bp (segment S4) to 4000 bp (segment L1). How the genetic variation among PRV strains affects the virulence for salmonids is still poorly understood. The aim of this study was to describe the molecular phylogeny of PRV based on an extensive sequence analysis of the S1 and M2 segments of PRV available in the GenBank database to date (May 2020). The analysis was extended to include new PRV sequences for S1 and M2 segments. In addition, subgenotype classifications were assigned to previously published unclassified sequences. It was concluded that the phylogenetic trees are consistent with the original classification using the PRV genomic segment S1, which differentiates PRV into two major genotypes, I and II, and each of these into two subgenotypes, designated as Ia and Ib, and IIa and IIb, respectively. Moreover, some clusters of country- and host-specific PRV subgenotypes were observed in the subset of sequences used. This work strengthens the subgenotype classification of PRV based on the S1 segment and can be used to enhance research on the virulence of PRV.


2003 ◽  
Vol 60 (3) ◽  
pp. 533-568 ◽  
Author(s):  
J. C. MANNING ◽  
P. GOLDBLATT ◽  
M. F. FAY

A revised generic synopsis of sub-Saharan Hyacinthaceae is presented, based on a molecular phylogenetic analysis of the family. Generic rank is accorded only to reciprocally monophyletic clades that can be distinguished by recognizable morphological discontinuities, thereby permitting an appropriate generic assignment of species not included in the analysis. Three subfamilies are recognized within the region. Subfamily Ornithogaloideae, characterized by flattened or angular seeds with tightly adhering testa, is considered to include the single genus Ornithogalum, which is expanded to include the genera Albuca, Dipcadi, Galtonia, Neopatersonia and Pseudogaltonia. Recognizing any of these segregates at generic level renders the genus Ornithogalum polyphyletic, while subdivision of Ornithogalum into smaller, morphologically distinguishable segregates in order to preserve the monophyly of each is not possible. Subfamily Urgineoideae, characterized by flattened or winged seeds with brittle, loosely adhering testa, comprises the two mainland African genera Bowiea and Drimia. The latter is well circumscribed by its deciduous, short-lived perianth and includes the previously recognized genera Litanthus, Rhadamanthus, Schizobasis and Tenicroa. The monotypic Madagascan Igidia is provisionally included in the subfamily as a third genus on the basis of its seeds, pending molecular confirmation of its relationships. Subfamily Hyacinthoideae resolves into three clades, distinguished as tribes Hyacintheae (strictly northern hemisphere and not treated further), Massonieae and Pseudoprospereae tribus nov. Full descriptions and a key to their identification are provided for all genera. New combinations reflecting the generic circumscriptions adopted here are made for most African and all Indian and Madagascan species.


Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 613-621 ◽  
Author(s):  
Douglas R Dorer ◽  
Jamie A Rudnick ◽  
Etsuko N Moriyama ◽  
Alan C Christensen

Abstract Within the unique Triplo-lethal region (Tpl) of the Drosophila melanogaster genome we have found a cluster of 20 genes encoding a novel family of proteins. This family is also present in the Anopheles gambiae genome and displays remarkable synteny and sequence conservation with the Drosophila cluster. The family is also present in the sequenced genome of D. pseudoobscura, and homologs have been found in Aedes aegypti mosquitoes and in four other insect orders, but it is not present in the sequenced genome of any noninsect species. Phylogenetic analysis suggests that the cluster evolved prior to the divergence of Drosophila and Anopheles (250 MYA) and has been highly conserved since. The ratio of synonymous to nonsynonymous substitutions and the high codon bias suggest that there has been selection on this family both for expression level and function. We hypothesize that this gene family is Tpl, name it the Osiris family, and consider possible functions. We also predict that this family of proteins, due to the unique dosage sensitivity and the lack of homologs in noninsect species, would be a good target for genetic engineering or novel insecticides.


2021 ◽  
Vol 95 ◽  
Author(s):  
M.M. Montes ◽  
J. Barneche ◽  
Y. Croci ◽  
D. Balcazar ◽  
A. Almirón ◽  
...  

Abstract During a parasitological survey of fishes at Iguazu National Park, Argentina, specimens belonging to the allocreadiid genus Auriculostoma were collected from the intestine of Characidium heirmostigmata. The erection of the new species is based on a unique combination of morphological traits as well as on phylogenetic analysis. Auriculostoma guacurarii n. sp. resembles four congeneric species – Auriculostoma diagonale, Auriculostoma platense, Auriculostoma tica and Auriculostoma totonacapanensis – in having smooth and oblique testes, but can be distinguished by a combination of several morphological features, hosts association and geographic distribution. Morphologically, the new species can be distinguished from both A. diagonale and A. platense by the egg size (bigger in the first and smaller in the last); from A. tica by a shorter body length, the genital pore position and the extension of the caeca; and from A. totonacapanensis by the size of the oral and ventral sucker and the post-testicular space. Additionally, one specimen of Auriculostoma cf. stenopteri from the characid Charax stenopterus (Characiformes) from La Plata River, Argentina, was sampled and the partial 28S rRNA gene was sequenced. The phylogenetic analysis revealed that A. guacurarii n. sp. clustered with A. tica and these two as sister taxa to A. cf. stenopteri. The new species described herein is the tenth species in the genus and the first one parasitizing a member of the family Crenuchidae.


2019 ◽  
Vol 33 (6) ◽  
pp. 494-503
Author(s):  
Ekarat Sombatsawat ◽  
Titaporn Luangwilai ◽  
Parichat Ong-artborirak ◽  
Wattasit Siriwong

Purpose The purpose of this paper is to explore the prevalence of musculoskeletal disorders (MSDs) and determine factors influencing MSDs among rice farmers. Design/methodology/approach A cross-sectional study was carried out among 156 rice farmers from 14 villages in Tarnlalord sub-district, Phimai district, Nakhon Ratchasima province, Thailand, from February 2017 to March 2017. Face-to-face interviews, including demographics, work characteristics and musculoskeletal pain, were conducted using a modified standardized Nordic questionnaire. Findings The results revealed that both 78 males and 78 females participated in the study to which the average of age and body mass index (BMI) was 45.5±11.4 years and 24.9±4.0 kg/m2, respectively. All rice farmers reported MSDs in at least one body region during the six months preceding the interview. The highest prevalence of MSDs showed 86.5 percent in the lower back area, followed by 85.9 percent in the neck, and 80.7 percent in the shoulders. The analysis of binary logistic regression and Spearman’s rank correlation showed that factors such as gender, age, BMI, work experience and farm size influence MSDs’ occurrence, and pain severity in one or more body regions (p < 0.05). Originality/value Musculoskeletal injuries are a significant health problem in rice farmers. The study indicated that appropriate agricultural practices such as working posture, equipment size selection and carrying loads should be recommended to prevent MSDs. Thus, the occupational health and safety services in agricultural workers are needed.


2009 ◽  
Vol 23 (3) ◽  
pp. 193 ◽  
Author(s):  
Matjaž Kuntner ◽  
Ingi Agnarsson

Phylogenies are underutilised, powerful predictors of traits in unstudied species. We tested phylogenetic predictions of web-related behaviour in Clitaetra Simon, 1889, an Afro-Indian spider genus of the family Nephilidae. Clitaetra is phylogenetically sister to all other nephilids and thus important for understanding ancestral traits. Behavioural information on Clitaetra has been limited to only C. irenae Kuntner, 2006 from South Africa which constructs ladder webs. A resolved species-level phylogeny unambiguously optimised Clitaetra behavioural biology and predicted web traits in five unstudied species and a uniform intrageneric nephilid web biology. We tested these predictions by studying the ecology and web biology of C. perroti Simon, 1894 on Madagascar and C. episinoides Simon, 1889 on Mayotte. We confirm predicted arboricolous web architecture in these species. The expected ontogenetic allometric transition from orbs in juveniles to elongate ladder webs in adults was statistically significant in C. perroti, whereas marginally not significant in C. episinoides. We demonstrate the persistence of the temporary spiral in finished Clitaetra webs. A morphological and behavioural phylogenetic analysis resulted in unchanged topology and persisting unambiguous behavioural synapomorphies. Our results support the homology of Clitaetra hub reinforcement with the nephilid hub-cup. In Clitaetra, behaviour was highly predictable and remained consistent with new observations. Our results confirm that nephilid web biology is evolutionarily conserved within genera.


2005 ◽  
Vol 26 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Francisca do Val ◽  
Paulo Nuin

AbstractThe systematics and phylogenetic relationships of the family Leptodactylidae are controversial as is the intrafamilial phylogeny of the leptodactylids. Here we analyze the relationships of the leptodactylid subfamily Hylodinae. This subfamily has been considered to be monophyletic and composed of three genera, Hylodes, Crossodactylus and Megaelosia. In the present study 49 characters were used, based on different studies on Leptodactylidae phylogeny. Maximum parsimony methods with unweighted and successively weighted characters were used to estimate the phylogeny of the Hylodinae. Upon analysis, the data provided further evidence of the monophyletic status of the three genera, with Megaelosia being the basal genus and the other two genera being sister taxa. The analysis with successive weighting results in a more resolved topology of the species subgroups of the genus Hylodes and separates this genus from Crossodactylus and confirms that the hylodines are monophyletic.


Sign in / Sign up

Export Citation Format

Share Document