scholarly journals Processing of a spoken narrative in the human brain is shaped by family cultural background

2020 ◽  
Author(s):  
M. Hakonen ◽  
A. Ikäheimonen ◽  
A. Hultèn ◽  
J. Kauttonen ◽  
M. Koskinen ◽  
...  

ABSTRACTUsing neuroimaging, we studied influence of family cultural background on processing of an audiobook in human brain. The audiobook depicted life of two young Finnish men, one with the Finnish and the other with the Russian family background. Shared family cultural background enhanced similarity of narrative processing in the brain at prelexical, word, sentence, and narrative levels. Similarity was also enhanced in brain areas supporting imagery. The cultural background was further reflected as semantic differences in word lists by which the subjects described what had been on their minds when they heard the audiobook during neuroimaging. Strength of social identity shaped word, sentence, and narrative level processing in the brain. These effects might enhance mutual understanding between persons who share family cultural background and social identity and, conversely, deteriorate between-group mutual understanding in modern multicultural societies wherein native speakers of a language may assume highly similar understanding.

Author(s):  
Mitsuru Shinohara ◽  
Junko Hirokawa ◽  
Akemi Shimodaira ◽  
Yoshitaka Tashiro ◽  
Kaoru Suzuki ◽  
...  

Abstract Despite the routine use of sandwich enzyme-linked immunosorbent assays (ELISAs) for quantifying tau levels in CSF and plasma, tau accumulations in the brains of patients with Alzheimer disease (AD) have rarely been evaluated by this method. Thus, by introducing several tau ELISAs that target different epitopes, we evaluated accumulated tau levels in postmortem brains depending on disease stage, brain areas, and other AD-related changes. Notably, tau levels in insoluble fraction determined by each ELISAs differ depending on the epitopes of antibodies: non-AD control samples yield relatively high signals when an antibody against the N-terminal region of tau is used. On the other hand, ELISAs combining antibodies against the later-middle to C-terminal regions of tau produced substantially increased signals from AD samples, compared to those from non-AD controls. Such ELISAs better distinguish AD and non-AD controls, and the results are more closely associated with Braak neurofibrillary tangles stage, Aβ accumulation, and glial markers. Moreover, these ELISAs can reflect the pattern of tau spread across brain regions. In conclusion, Tau ELISAs that combine antibodies against the later-middle to C-terminal regions of tau can better reflect neuropathological tau accumulation, which would enable to evaluate tau accumulation in the brain at a biochemical level.


2018 ◽  
Vol 27 (6) ◽  
pp. 462-469 ◽  
Author(s):  
Merim Bilalić

The performance of experts seems almost effortless. The neural-efficiency hypothesis takes this into account, suggesting that because of practice and automatization of procedures, experts require fewer brain resources. Here, I argue that the way the brain accommodates complex skills does indeed have to do with the nature of experts’ performance. However, instead of exhibiting less brain activation, experts’ performance actually engages more brain areas. Behind the seemingly effortless performance of experts lies a complex cognitive system that relies on knowledge about the domain of expertise. Unlike novices, who need to execute one process at a time, experts are able to recognize an object, retrieve its function, and connect it to another object simultaneously. The expert brain deals with this computational burden by engaging not only specific brain areas in one hemisphere but also the same (homologous) area in the opposite hemisphere. This phenomenon, which I call the double take of expertise, has been observed in a number of expertise domains. I describe it here in object- and pattern-recognition tasks in the domain of chess. I also discuss the importance of the study of expertise for our understanding of the human brain in general.


Author(s):  
Roger Penrose ◽  
Martin Gardner

What need we know of the workings of Nature in order to appreciate how consciousness may be part of it? Does it really matter what are the laws that govern the constituent elements of bodies and brains? If our conscious perceptions are merely the enacting of algorithms, as many AI supporters would have us believe, then it would not be of much relevance what these laws actually are. Any device which is capable of acting out an algorithm would be as good as any other. Perhaps, on the other hand, there is more to our feelings of awareness than mere algorithms. Perhaps the detailed way in which we are constituted is indeed of relevance, as are the precise physical laws that actually govern the substance of which we are composed. Perhaps we shall need to understand whatever profound quality it is that underlies the very nature of matter, and decrees the way in which all matter must behave. Physics is not yet at such a point. There are many mysteries to be unravelled and many deep insights yet to be gained. Yet, most physicists and physiologists would judge that we already know enough about those physical laws that are relevant to the workings of such an ordinary-sized object as a human brain. While it is undoubtedly the case that the brain is exceptionally complicated as a physical system, and a vast amount about its detailed structure and relevant operation is not yet known, few would claim that it is in the physical principles underlying its behaviour that there is any significant lack of understanding. I shall later argue an unconventional case that, on the contrary, we do not yet understand physics sufficiently well that the functioning of our brains can be adequately described in terms of it, even in principle. To make this case, it will be necessary for me first to provide some overview of the status of present physical theory. This chapter is concerned with what is called ‘classical physics’, which includes both Newton’s mechanics and Einstein’s relativity.


Mind Shift ◽  
2021 ◽  
pp. 63-79
Author(s):  
John Parrington

This chapter evaluates the basic unit of the human brain: the nerve cell, or neuron. These cells are also the main units of the peripheral nervous system, which sends messages from the brain to the other tissues and organs that make up our bodies. Neurons are the most well-known cells in the brain but they are not the only type of cell in this organ. The other main types are the glial cells, also known as neuroglia. Recent studies of the role of glial cells in the brain are revealing potentially important differences between humans and other species in the functions of these cells. The chapter then turns to the large-scale structure of the brain. The most dramatic changes in brain size and structure occurred in the final phase of human evolutionary change. Indeed, Neanderthals had brains similar in size to those of modern humans. An important feature of the human brain is that a larger fraction of its growth occurs outside the womb. Although humans reach adult brain size in childhood, brain development continues for decades afterwards.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Leandro Castañeyra-Ruiz ◽  
Ibrahim González-Marrero ◽  
Agustín Castañeyra-Ruiz ◽  
Juan M. González-Toledo ◽  
María Castañeyra-Ruiz ◽  
...  

Neuromyelitis optica is an inflammatory disease characterized by neuritis and myelitis of the optic nerve. Its physiopathology is connected with the aquaporin-4 water channel, since antibodies against aquaporin-4 have been found in the cerebrospinal fluid and blood of neuromyelitis optica patients. The seropositivity for aquaporin-4 antibodies is used for the diagnosis of neuromyelitis optica or neuromyelitis optica spectrum disease. On the other hand, aquaporin-4 is expressed in astrocyte feet in the brain-blood barrier and subventricular zones of the brain ventricles. Aquaporin-4 expression is high in cerebrospinal fluid in hydrocephalus. Furthermore, neuroepithelial denudation precedes noncommunicating hydrocephalus and this neuroepithelial disruption could allow aquaporin-4 to reach anomalous brain areas where it is unrecognized and induce the generation of aquaporin-4 antibodies which could cause the neuromyelitis optica and certain types of hydrocephalus.


2011 ◽  
Vol 106 (3) ◽  
pp. 1558-1569 ◽  
Author(s):  
Klaus Wunderlich ◽  
Ulrik R. Beierholm ◽  
Peter Bossaerts ◽  
John P. O'Doherty

Prefrontal cortex has long been implicated in tasks involving higher order inference in which decisions must be rendered, not only about which stimulus is currently rewarded, but also which stimulus dimensions are currently relevant. However, the precise computational mechanisms used to solve such tasks have remained unclear. We scanned human participants with functional MRI, while they performed a hierarchical intradimensional/extradimensional shift task to investigate what strategy subjects use while solving higher order decision problems. By using a computational model-based analysis, we found behavioral and neural evidence that humans solve such problems not by occasionally shifting focus from one to the other dimension, but by considering multiple explanations simultaneously. Activity in human prefrontal cortex was better accounted for by a model that integrates over all available evidences than by a model in which attention is selectively gated. Importantly, our model provides an explanation for how the brain determines integration weights, according to which it could distribute its attention. Our results demonstrate that, at the point of choice, the human brain and the prefrontal cortex in particular are capable of a weighted integration of information across multiple evidences.


2012 ◽  
Vol 15 (3) ◽  
pp. 401-413 ◽  
Author(s):  
Miguel E. Rentería

The longitudinal fissure separates the human brain into two hemispheres that remain connected through the corpus callosum. The left and the right halves of the brain resemble each other, and almost every structure present in one side has an equivalent structure in the other. Despite this exceptional correspondence, the two hemispheres also display important anatomical differences and there is marked lateralization of certain cognitive and motor functions such as language and handedness. However, the mechanisms that underlie the establishment of these hemispheric specializations, as well as their physiological and behavioral implications, remain largely unknown. Thanks to recent advances in neuroimaging, a series of studies documenting variation in symmetry and asymmetry as a function of age, gender, brain region, and pathological state, have been published in the past decade. Here, we review evidence of normal and atypical cerebral asymmetry, and the factors that influence it at the macrostructural level. Given the prominent role that cerebral asymmetry plays in the organization of the brain, and its possible implication in neurodevelopmental and psychiatric conditions, further research in this area is anticipated.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2345 ◽  
Author(s):  
Jichao Ma ◽  
Chunyu Du ◽  
Weifeng Liu ◽  
Yanjiang Wang

Unravelling how the human brain structure gives rise to function is a central question in neuroscience and remains partially answered. Recent studies show that the graph Laplacian of the human brain’s structural connectivity (SC) plays a dominant role in shaping the pattern of resting-state functional connectivity (FC). The modeling of FC using the graph Laplacian of the brain’s SC is limited, owing to the sparseness of the Laplacian matrix. It is unable to model the negative functional correlations. We extended the graph Laplacian to the hypergraph p-Laplacian in order to describe better the nonlinear and high-order relations between SC and FC. First we estimated those possible links showing negative correlations between the brain areas shared across subjects by statistical analysis. Then we presented a hypergraph p-Laplacian model by embedding the two matrices referring to the sign of the correlations between the brain areas relying on the brain structural connectome. We tested the model on two experimental connectome datasets and evaluated the predicted FC by estimating its Pearson correlation with the empirical FC matrices. The results showed that the proposed diffusion model based on hypergraph p-Laplacian can predict functional correlations more accurately than the models using graph Laplacian as well as hypergraph Laplacian.


2020 ◽  
Vol 26 (5-6) ◽  
pp. 438-454 ◽  
Author(s):  
Lezanne Ooi ◽  
Mirella Dottori ◽  
Anthony L. Cook ◽  
Martin Engel ◽  
Vini Gautam ◽  
...  

Because our beliefs regarding our individuality, autonomy, and personhood are intimately bound up with our brains, there is a public fascination with cerebral organoids, the “mini-brain,” the “brain in a dish”. At the same time, the ethical issues around organoids are only now being explored. What are the prospects of using human cerebral organoids to better understand, treat, or prevent dementia? Will human organoids represent an improvement on the current, less-than-satisfactory, animal models? When considering these questions, two major issues arise. One is the general challenge associated with using any stem cell–generated preparation for in vitro modelling (challenges amplified when using organoids compared with simpler cell culture systems). The other relates to complexities associated with defining and understanding what we mean by the term “dementia.” We discuss 10 puzzles, issues, and stumbling blocks to watch for in the quest to model “dementia in a dish.”


2021 ◽  
Author(s):  
Jaime Gomez Ramirez ◽  
Javier J González-Rosa

Abstract Here we address the hemispheric interdependency of subcortical structures in the aging human brain. In particular, we investigate whether volume variation can be explained with the adjacency of structures in the same hemisphere or is due to the interhemispheric development of mirror subcortical structures in the brain. Seven subcortical structures in both hemispheres were automatically segmented in a large sample of over three 3,312 magnetic resonance imaging (MRI) studies of elderly individuals in their 70s and 80s. We perform Eigenvalue analysis to find that anatomic volumes in the limbic system and basal ganglia show similar statistical dependency when considered in the same hemisphere (intrahemispheric) or in different hemispheres (interhemispheric). Our results indicate that anatomic bilaterality is preserved in the aging human brain, supporting the hypothesis that coupling between non-adjacent brain areas could act as a mechanism to compensate for the deleterious effects of aging.


Sign in / Sign up

Export Citation Format

Share Document