Leveraging pleiotropy in genome-wide association studies in multiple traits with per trait interpretations

2020 ◽  
Author(s):  
Kodi Taraszka ◽  
Noah Zaitlen ◽  
Eleazar Eskin

AbstractWe introduce pleiotropic association test (PAT) for joint analysis of multiple traits using GWAS summary statistics. The method utilizes the decomposition of phenotypic covariation into genetic and environmental components to create a likelihood ratio test statistic for each genetic variant. Though PAT does not directly interpret which trait(s) drive the association, a per trait interpretation of the omnibus p-value is provided through an extension to the meta-analysis framework, m-values. In simulations, we show PAT controls the false positive rate, increases statistical power, and is robust to model misspecifications of genetic effect.Additionally, simulations comparing PAT to two multi-trait methods, HIPO and MTAG show PAT having a 43.0% increase in the number of omnibus associations over the other methods. When these associations are interpreted on a per trait level using m-values, PAT has 52.2% more per trait interpretations with a 0.57% false positive assignment rate. When analyzing four traits from the UK Biobank, PAT identifies 22,095 novel associated variants. Through the m-values interpretation framework, the number of total per trait associations for two traits are almost tripled and are nearly doubled for another trait relative to the original single trait GWAS.

2018 ◽  
Author(s):  
Cox Lwaka Tamba ◽  
Yuan-Ming Zhang

AbstractBackgroundRecent developments in technology result in the generation of big data. In genome-wide association studies (GWAS), we can get tens of million SNPs that need to be tested for association with a trait of interest. Indeed, this poses a great computational challenge. There is a need for developing fast algorithms in GWAS methodologies. These algorithms must ensure high power in QTN detection, high accuracy in QTN estimation and low false positive rate.ResultsHere, we accelerated mrMLM algorithm by using GEMMA idea, matrix transformations and identities. The target functions and derivatives in vector/matrix forms for each marker scanning are transformed into some simple forms that are easy and efficient to evaluate during each optimization step. All potentially associated QTNs with P-values ≤ 0.01 are evaluated in a multi-locus model by LARS algorithm and/or EM-Empirical Bayes. We call the algorithm FASTmrMLM. Numerical simulation studies and real data analysis validated the FASTmrMLM. FASTmrMLM reduces the running time in mrMLM by more than 50%. FASTmrMLM also shows high statistical power in QTN detection, high accuracy in QTN estimation and low false positive rate as compared to GEMMA, FarmCPU and mrMLM. Real data analysis shows that FASTmrMLM was able to detect more previously reported genes than all the other methods: GEMMA/EMMA, FarmCPU and mrMLM.ConclusionsFASTmrMLM is a fast and reliable algorithm in multi-locus GWAS and ensures high statistical power, high accuracy of estimates and low false positive rate.Author SummaryThe current developments in technology result in the generation of a vast amount of data. In genome-wide association studies, we can get tens of million markers that need to be tested for association with a trait of interest. Due to the computational challenge faced, we developed a fast algorithm for genome-wide association studies. Our approach is a two stage method. In the first step, we used matrix transformations and identities to quicken the testing of each random marker effect. The target functions and derivatives which are in vector/matrix forms for each marker scanning are transformed into some simple forms that are easy and efficient to evaluate during each optimization step. In the second step, we selected all potentially associated SNPs and evaluated them in a multi-locus model. From simulation studies, our algorithm significantly reduces the computing time. The new method also shows high statistical power in detecting significant markers, high accuracy in marker effect estimation and low false positive rate. We also used the new method to identify relevant genes in real data analysis. We recommend our approach as a fast and reliable method for carrying out a multi-locus genome-wide association study.


2021 ◽  
Author(s):  
Meida Wang ◽  
Shuanglin Zhang ◽  
Qiuying Sha

There has been an increasing interest in joint analysis of multiple phenotypes in genome-wide association studies (GWAS) because jointly analyzing multiple phenotypes may increase statistical power to detect genetic variants associated with complex diseases or traits. Recently, many statistical methods have been developed for joint analysis of multiple phenotypes in genetic association studies, including the Clustering Linear Combination (CLC) method. The CLC method works particularly well with phenotypes that have natural groupings, but due to the unknown number of clusters for a given data, the final test statistic of CLC method is the minimum p-value among all p-values of the CLC test statistics obtained from each possible number of clusters. Therefore, a simulation procedure must be used to evaluate the p-value of the final test statistic. This makes the CLC method computationally demanding. We develop a new method called computationally efficient CLC (ceCLC) to test the association between multiple phenotypes and a genetic variant. Instead of using the minimum p-value as the test statistic in the CLC method, ceCLC uses the Cauchy combination test to combine all p-values of the CLC test statistics obtained from each possible number of clusters. The test statistic of ceCLC approximately follows a standard Cauchy distribution, so the p-value can be obtained from the cumulative density function without the need for the simulation procedure. Through extensive simulation studies and application on the COPDGene data, the results demonstrate that the type I error rates of ceCLC are effectively controlled in different simulation settings and ceCLC either outperforms all other methods or has statistical power that is very close to the most powerful method with which it has been compared.


2021 ◽  
Author(s):  
Ronald J Yurko ◽  
Kathryn Roeder ◽  
Bernie Devlin ◽  
Max G'Sell

In genome-wide association studies (GWAS), it has become commonplace to test millions of SNPs for phenotypic association. Gene-based testing can improve power to detect weak signal by reducing multiple testing and pooling signal strength. While such tests account for linkage disequilibrium (LD) structure of SNP alleles within each gene, current approaches do not capture LD of SNPs falling in different nearby genes, which can induce correlation of gene-based test statistics. We introduce an algorithm to account for this correlation. When a gene's test statistic is independent of others, it is assessed separately; when test statistics for nearby genes are strongly correlated, their SNPs are agglomerated and tested as a locus. To provide insight into SNPs and genes driving association within loci, we develop an interactive visualization tool to explore localized signal. We demonstrate our approach in the context of weakly powered GWAS for autism spectrum disorder, which is contrasted to more highly powered GWAS for schizophrenia and educational attainment. To increase power for these analyses, especially those for autism, we use adaptive p-value thresholding (AdaPT), guided by high-dimensional metadata modeled with gradient boosted trees, highlighting when and how it can be most useful. Notably our workflow is based on summary statistics.


2019 ◽  
Vol 116 (4) ◽  
pp. 1195-1200 ◽  
Author(s):  
Daniel J. Wilson

Analysis of “big data” frequently involves statistical comparison of millions of competing hypotheses to discover hidden processes underlying observed patterns of data, for example, in the search for genetic determinants of disease in genome-wide association studies (GWAS). Controlling the familywise error rate (FWER) is considered the strongest protection against false positives but makes it difficult to reach the multiple testing-corrected significance threshold. Here, I introduce the harmonic mean p-value (HMP), which controls the FWER while greatly improving statistical power by combining dependent tests using generalized central limit theorem. I show that the HMP effortlessly combines information to detect statistically significant signals among groups of individually nonsignificant hypotheses in examples of a human GWAS for neuroticism and a joint human–pathogen GWAS for hepatitis C viral load. The HMP simultaneously tests all ways to group hypotheses, allowing the smallest groups of hypotheses that retain significance to be sought. The power of the HMP to detect significant hypothesis groups is greater than the power of the Benjamini–Hochberg procedure to detect significant hypotheses, although the latter only controls the weaker false discovery rate (FDR). The HMP has broad implications for the analysis of large datasets, because it enhances the potential for scientific discovery.


Genes ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 608
Author(s):  
Yingjie Guo ◽  
Chenxi Wu ◽  
Maozu Guo ◽  
Xiaoyan Liu ◽  
Alon Keinan

Among the various statistical methods for identifying gene–gene interactions in qualitative genome-wide association studies (GWAS), gene-based methods have recently grown in popularity because they confer advantages in both statistical power and biological interpretability. However, most of these methods make strong assumptions about the form of the relationship between traits and single-nucleotide polymorphisms, which result in limited statistical power. In this paper, we propose a gene-based method based on the distance correlation coefficient called gene-based gene-gene interaction via distance correlation coefficient (GBDcor). The distance correlation (dCor) is a measurement of the dependency between two random vectors with arbitrary, and not necessarily equal, dimensions. We used the difference in dCor in case and control datasets as an indicator of gene–gene interaction, which was based on the assumption that the joint distribution of two genes in case subjects and in control subjects should not be significantly different if the two genes do not interact. We designed a permutation-based statistical test to evaluate the difference between dCor in cases and controls for a pair of genes, and we provided the p-value for the statistic to represent the significance of the interaction between the two genes. In experiments with both simulated and real-world data, our method outperformed previous approaches in detecting interactions accurately.


2016 ◽  
Author(s):  
Weikang Gong ◽  
Lin Wan ◽  
Wenlian Lu ◽  
Liang Ma ◽  
Fan Cheng ◽  
...  

AbstractThe identification of connexel-wise associations, which involves examining functional connectivities between pairwise voxels across the whole brain, is both statistically and computationally challenging. Although such a connexel-wise methodology has recently been adopted by brain-wide association studies (BWAS) to identify connectivity changes in several mental disorders, such as schizophrenia, autism and depression [Cheng et al., 2015a,b, 2016], the multiple correction and power analysis methods designed specifically for connexel-wise analysis are still lacking. Therefore, we herein report the development of a rigorous statistical framework for connexel-wise significance testing based on the Gaussian random field theory. It includes controlling the family-wise error rate (FWER) of multiple hypothesis testings using topological inference methods, and calculating power and sample size for a connexel-wise study. Our theoretical framework can control the false-positive rate accurately, as validated empirically using two resting-state fMRI datasets. Compared with Bonferroni correction and false discovery rate (FDR), it can reduce false-positive rate and increase statistical power by appropriately utilizing the spatial information of fMRI data. Importantly, our method considerably reduces the computational complexity of a permutation-or simulation-based approach, thus, it can efficiently tackle large datasets with ultra-high resolution images. The utility of our method is shown in a case-control study. Our approach can identify altered functional connectivities in a major depression disorder dataset, whereas existing methods failed. A software package is available at https://github.com/weikanggong/BWAS.


2021 ◽  
Author(s):  
Runqing Yang ◽  
Yuxin Song ◽  
Li Jiang ◽  
Zhiyu Hao ◽  
Runqing Yang

Abstract Complex computation and approximate solution hinder the application of generalized linear mixed models (GLMM) into genome-wide association studies. We extended GRAMMAR to handle binary diseases by considering genomic breeding values (GBVs) estimated in advance as a known predictor in genomic logit regression, and then controlled polygenic effects by regulating downward genomic heritability. Using simulations and case analyses, we showed in optimizing GRAMMAR, polygenic effects and genomic controls could be evaluated using the fewer sampling markers, which extremely simplified GLMM-based association analysis in large-scale data. In addition, joint analysis for quantitative trait nucleotide (QTN) candidates chosen by multiple testing offered significant improved statistical power to detect QTNs over existing methods.


2019 ◽  
Vol 35 (19) ◽  
pp. 3693-3700 ◽  
Author(s):  
Xingjie Shi ◽  
Yuling Jiao ◽  
Yi Yang ◽  
Ching-Yu Cheng ◽  
Can Yang ◽  
...  

Abstract Motivation In genome-wide association studies (GWASs) where multiple correlated traits have been measured on participants, a joint analysis strategy, whereby the traits are analyzed jointly, can improve statistical power over a single-trait analysis strategy. There are two questions of interest to be addressed when conducting a joint GWAS analysis with multiple traits. The first question examines whether a genetic loci is significantly associated with any of the traits being tested. The second question focuses on identifying the specific trait(s) that is associated with the genetic loci. Since existing methods primarily focus on the first question, this article seeks to provide a complementary method that addresses the second question. Results We propose a novel method, Variational Inference for Multiple Correlated Outcomes (VIMCO) that focuses on identifying the specific trait that is associated with the genetic loci, when performing a joint GWAS analysis of multiple traits, while accounting for correlation among the multiple traits. We performed extensive numerical studies and also applied VIMCO to analyze two datasets. The numerical studies and real data analysis demonstrate that VIMCO improves statistical power over single-trait analysis strategies when the multiple traits are correlated and has comparable performance when the traits are not correlated. Availability and implementation The VIMCO software can be downloaded from: https://github.com/XingjieShi/VIMCO. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Pieter W. M. Bonnemaijer ◽  
◽  
Elisabeth M. van Leeuwen ◽  
Adriana I. Iglesias ◽  
Puya Gharahkhani ◽  
...  

AbstractA new avenue of mining published genome-wide association studies includes the joint analysis of related traits. The power of this approach depends on the genetic correlation of traits, which reflects the number of pleiotropic loci, i.e. genetic loci influencing multiple traits. Here, we applied new meta-analyses of optic nerve head (ONH) related traits implicated in primary open-angle glaucoma (POAG); intraocular pressure and central corneal thickness using Haplotype reference consortium imputations. We performed a multi-trait analysis of ONH parameters cup area, disc area and vertical cup-disc ratio. We uncover new variants; rs11158547 in PPP1R36-PLEKHG3 and rs1028727 near SERPINE3 at genome-wide significance that replicate in independent Asian cohorts imputed to 1000 Genomes. At this point, validation of these variants in POAG cohorts is hampered by the high degree of heterogeneity. Our results show that multi-trait analysis is a valid approach to identify novel pleiotropic variants for ONH.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenhan Chen ◽  
Yang Wu ◽  
Zhili Zheng ◽  
Ting Qi ◽  
Peter M. Visscher ◽  
...  

AbstractSummary statistics from genome-wide association studies (GWAS) have facilitated the development of various summary data-based methods, which typically require a reference sample for linkage disequilibrium (LD) estimation. Analyses using these methods may be biased by errors in GWAS summary data or LD reference or heterogeneity between GWAS and LD reference. Here we propose a quality control method, DENTIST, that leverages LD among genetic variants to detect and eliminate errors in GWAS or LD reference and heterogeneity between the two. Through simulations, we demonstrate that DENTIST substantially reduces false-positive rate in detecting secondary signals in the summary-data-based conditional and joint association analysis, especially for imputed rare variants (false-positive rate reduced from >28% to <2% in the presence of heterogeneity between GWAS and LD reference). We further show that DENTIST can improve other summary-data-based analyses such as fine-mapping analysis.


Sign in / Sign up

Export Citation Format

Share Document