scholarly journals Rapid Isothermal Amplification and Portable Detection System for SARS-CoV-2

Author(s):  
A. Ganguli ◽  
A. Mostafa ◽  
J. Berger ◽  
M. Aydin ◽  
F. Sun ◽  
...  

AbstractThe COVID-19 pandemic provides an urgent example where a gap exists between availability of state-of-the-art diagnostics and current needs. As assay details and primer sequences become widely known, many laboratories could perform diagnostic tests using methods such as RT-PCR or isothermal RT-LAMP amplification. A key advantage of RT-LAMP based approaches compared to RT-PCR is that RT-LAMP is known to be robust in detecting targets from unprocessed samples. In addition, RT-LAMP assays are performed at a constant temperature enabling speed, simplicity, and point-of-use testing. Here, we provide the details of an RT-LAMP isothermal assay for the detection of SARS-CoV-2 virus with performance comparable to currently approved tests using RT-PCR. We characterize the assay by introducing swabs in virus spiked synthetic nasal fluids, moving the swab to viral transport medium (VTM), and using a volume of that VTM for performing the amplification without an RNA extraction kit. The assay has a Limit-of-Detection (LOD) of 50 RNA copies/μL in the VTM solution within 20 minutes, and LOD of 5000 RNA copies/μL in the nasal solution. Additionally, we show the utility of this assay for real-time point-of-use testing by demonstrating detection of SARS-CoV-2 virus in less than 40 minutes using an additively manufactured cartridge and a smartphone-based reader. Finally, we explore the speed and cost advantages by comparing the required resources and workflows with RT-PCR. This work could accelerate the development and availability of SARS-CoV-2 diagnostics by proving alternatives to conventional laboratory benchtop tests.Significance StatementAn important limitation of the current assays for the detection of SARS-CoV-2 stem from their reliance on time- and labor-intensive and laboratory-based protocols for viral isolation, lysis, and removal of inhibiting materials. While RT-PCR remains the gold standard for performing clinical diagnostics to amplify the RNA sequences, there is an urgent need for alternative portable platforms that can provide rapid and accurate diagnosis, potentially at the point-of-use. Here, we present the details of an isothermal amplification-based detection of SARS-CoV-2, including the demonstration of a smartphone-based point-of-care device that can be used at the point of sample collection.

2020 ◽  
Vol 117 (37) ◽  
pp. 22727-22735 ◽  
Author(s):  
Anurup Ganguli ◽  
Ariana Mostafa ◽  
Jacob Berger ◽  
Mehmet Y. Aydin ◽  
Fu Sun ◽  
...  

The COVID-19 pandemic provides an urgent example where a gap exists between availability of state-of-the-art diagnostics and current needs. As assay protocols and primer sequences become widely known, many laboratories perform diagnostic tests using methods such as RT-PCR or reverse transcription loop mediated isothermal amplification (RT-LAMP). Here, we report an RT-LAMP isothermal assay for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and demonstrate the assay on clinical samples using a simple and accessible point-of-care (POC) instrument. We characterized the assay by dipping swabs into synthetic nasal fluid spiked with the virus, moving the swab to viral transport medium (VTM), and sampling a volume of the VTM to perform the RT-LAMP assay without an RNA extraction kit. The assay has a limit of detection (LOD) of 50 RNA copies per μL in the VTM solution within 30 min. We further demonstrate our assay by detecting SARS-CoV-2 viruses from 20 clinical samples. Finally, we demonstrate a portable and real-time POC device to detect SARS-CoV-2 from VTM samples using an additively manufactured three-dimensional cartridge and a smartphone-based reader. The POC system was tested using 10 clinical samples, and was able to detect SARS-CoV-2 from these clinical samples by distinguishing positive samples from negative samples after 30 min. The POC tests are in complete agreement with RT-PCR controls. This work demonstrates an alternative pathway for SARS-CoV-2 diagnostics that does not require conventional laboratory infrastructure, in settings where diagnosis is required at the point of sample collection.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0243712
Author(s):  
Pierre Garneret ◽  
Etienne Coz ◽  
Elian Martin ◽  
Jean-Claude Manuguerra ◽  
Elodie Brient-Litzler ◽  
...  

To respond to the urgent need for COVID-19 testing, countries perform nucleic acid amplification tests (NAAT) for the detection of SARS-CoV-2 in centralized laboratories. Real-time RT—PCR (Reverse transcription—Polymerase Chain Reaction), used to amplify and detect the viral RNA., is considered, as the current gold standard for diagnostics. It is an efficient process, but the complex engineering required for automated RNA extraction and temperature cycling makes it incompatible for use in point of care settings [1]. In the present work, by harnessing progress made in the past two decades in isothermal amplification and paper microfluidics, we created a portable test, in which SARS-CoV-2 RNA is extracted, amplified isothermally by RT—LAMP (Loop-mediated Isothermal Amplification), and detected using intercalating dyes or fluorescent probes. Depending on the viral load in the tested samples, the detection takes between twenty minutes and one hour. Using a set of 16 pools of naso-pharyngal swab eluates, we estimated a limit of detection comparable to real-time RT-PCR (i.e. 1 genome copies per microliter of clinical sample) and no cross‐reaction with eight major respiratory viruses currently circulating in Europe. We designed and fabricated an easy-to-use portable device called “COVIDISC” to carry out the test at the point of care. The low cost of the materials along with the absence of complex equipment will expedite the widespread dissemination of this device. What is proposed here is a new efficient tool to help managing the pandemics.


Author(s):  
Melis N Anahtar ◽  
Graham E G McGrath ◽  
Brian A Rabe ◽  
Nathan A Tanner ◽  
Benjamin A White ◽  
...  

Abstract Background Amid the enduring pandemic, there is an urgent need for expanded access to rapid, sensitive, and inexpensive COVID-19 testing worldwide without specialized equipment. We developed a simple test that uses colorimetric reverse-transcription loop-mediated isothermal amplification (RT-LAMP) to detect SARS-CoV-2 in forty minutes from sample collection to result. Methods We tested 135 nasopharyngeal specimens from patients evaluated for COVID-19 infection at Massachusetts General Hospital. Specimens were either added directly to RT-LAMP reactions, inactivated by a combined chemical and heat treatment step, or inactivated then purified with a silica-particle based concentration method. Amplification was performed with two SARS-CoV-2-specific primer sets and an internal specimen control; the resulting color change was visually interpreted. Results Direct RT-LAMP testing of unprocessed specimens could only reliably detect samples with abundant SARS-CoV-2 (>3,000,000 copies/mL), with sensitivities of 50% (95% CI, 28 to 72) and 59% (95% CI, 43 to 73) in samples collected in universal transport medium and saline, respectively, compared to qPCR. Adding an up-front RNase inactivation step markedly improved the limit of detection to at least 25,000 copies/mL, with 87.5% (95% CI, 72 to 95) sensitivity and 100% specificity (95% CI, 87 to 100). Using both inactivation and purification increased the assay sensitivity by ten-fold, achieving a limit of detection comparable to commercial real-time PCR-based diagnostics. Conclusion By incorporating a fast and inexpensive sample preparation step, RT-LAMP accurately detects SARS-CoV-2 with limited equipment for about US$6 per sample, making this a potentially ideal assay to increase testing capacity especially in resource-limited settings.


2021 ◽  
Author(s):  
Noah Toppings ◽  
Abu Mohon ◽  
Yoonjung Lee ◽  
Hitendra Kumar ◽  
Daniel Lee ◽  
...  

Abstract The highly infectious nature of SARS-CoV-2 necessitates the use of widespread testing to control the spread of the virus. Presently, the standard molecular testing method (reverse transcriptase-polymerase chain reaction, RT-PCR) is restricted to the laboratory, time-consuming, and costly. This increases the turnaround time for getting test results. The study sought to develop a rapid, near-patient saliva-based test for COVID-19 with similar accuracy to that of standard RT-PCR tests. A lyophilized dual-target reverse transcription-loop-mediated isothermal amplification (RT-LAMP) test with fluorometric detection by the naked eye. The assay relies on dry reagents that are room temperature stable. A device containing a centrifuge, heat block, and blue LED light system was manufactured to reduce the cost of performing the assay. This test has a limit of detection of 1 copy/µL and achieved positive percent agreement of 100% [95% CI 88.43% to 100.0%] and negative percent agreement of 96.7% [95% CI 82.78% to 99.92%] on saliva. Saliva-Dry LAMP can be completed in 105 minutes. Precision, cross-reactivity, and interfering substances analysis met international regulatory standards. The combination of ease of sample collection, dry reagents, visual detection, low capital equipment cost, and excellent analytical sensitivity make Saliva-Dry LAMP particularly useful for resource-limited settings.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xu Chen ◽  
Qingxue Zhou ◽  
Xueli Wu ◽  
Shuoshi Wang ◽  
Rui Liu ◽  
...  

Neisseriagonorrhoeae is a host-adapted human pathogen that causes sexually transmitted gonorrhea and remains to be a serious global public health challenge, especially in low- and middle-income regions. It is vital to devise a reliable, simple, cost-saving, and easy-to-use assay for detecting the N. gonorrhoeae agent. In the current study, we firstly report a novel approach, loop-mediated isothermal amplification linked with a polymer nanoparticle–based biosensor (LAMP-PNB), that was used for identifying N. gonorrhoeae in clinical samples. The results showed that the LAMP primers based on the orf1 gene were valid for development of the N. gonorrhoeae-LAMP-PNB assay. The detection system with optimal conditions could be performed at a fixed temperature of 64°C for 40 min. The whole process, including genomic DNA preparation (approximately 10 min), LAMP reaction (40 min), and PNB reporting (approximately 2 min), could be accomplished within 60 min. The limit of detection (LoD) of the N. gonorrhoeae-LAMP-PNB assay was 50 copies per test. The specificity of the current assay was 100%, and no cross-reactions to non–N. gonorrhoeae isolates were observed. These results confirmed that the N. gonorrhoeae-LAMP-PNB technique is a reliable, specific, sensitive, rapid, low-cost, and easy-to-use method for detecting gonococci isolates. More importantly, this assay has great potential to develop a point-of-care (POC) testing method in clinical practice, especially in resource-constrained regions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noah B. Toppings ◽  
Abu Naser Mohon ◽  
Yoonjung Lee ◽  
Hitendra Kumar ◽  
Daniel Lee ◽  
...  

AbstractThe highly infectious nature of SARS-CoV-2 necessitates the use of widespread testing to control the spread of the virus. Presently, the standard molecular testing method (reverse transcriptase-polymerase chain reaction, RT-PCR) is restricted to the laboratory, time-consuming, and costly. This increases the turnaround time for getting test results. This study sought to develop a rapid, near-patient saliva-based test for COVID-19 (Saliva-Dry LAMP) with similar accuracy to that of standard RT-PCR tests. A lyophilized dual-target reverse transcription-loop-mediated isothermal amplification (RT-LAMP) test with fluorometric detection by the naked eye was developed. The assay relies on dry reagents that are room temperature stable. A device containing a centrifuge, heat block, and blue LED light system was manufactured to reduce the cost of performing the assay. This test has a limit of detection of 1 copy/µL and achieved a positive percent agreement of 100% [95% CI 88.43% to 100.0%] and a negative percent agreement of 96.7% [95% CI 82.78–99.92%] relative to a reference standard test. Saliva-Dry LAMP can be completed in 105 min. Precision, cross-reactivity, and interfering substances analysis met international regulatory standards. The combination of ease of sample collection, dry reagents, visual detection, low capital equipment cost, and excellent analytical sensitivity make Saliva-Dry LAMP particularly useful for resource-limited settings.


2020 ◽  
Author(s):  
Samantha A. Byrnes ◽  
Ryan Gallagher ◽  
Amy Steadman ◽  
Crissa Bennett ◽  
Rafael Rivera ◽  
...  

The rapid onset of the global COVID-19 pandemic has led to multiple challenges for accurately diagnosing the infection. One of the main bottlenecks for COVID-19 detection is reagent and material shortages for sample collection, preservation, and purification prior to testing. Currently, most authorized diagnostic tests require RNA extraction from patient samples and detection by reverse transcription polymerase chain reaction (RT-PCR). However, RNA purification is expensive, time consuming, and requires technical expertise to perform. Additionally, there have been reported shortages of the RNA purification kits needed for most tests. With these challenges in mind, we report on extraction-free amplification of SARS-CoV-2 RNA directly from patient samples. In addition, we have developed a multiplex RT-PCR using the CDC singleplex targets. This multiplex has a limit of detection of 2 copies/μL. We have demonstrated these improvements to the current diagnostic workflow, which reduce complexity and cost, minimize reagent usage, expedite time to results, and increase testing capacity.


2017 ◽  
Author(s):  
Bo Tian ◽  
Peter Svedlindh ◽  
Mattias Strömberg ◽  
Erik Wetterskog

In this work, we demonstrate for the first time, a ferromagnetic resonance (FMR) based homogeneous and volumetric biosensor for magnetic label detection. Two different isothermal amplification methods, <i>i.e.</i>, rolling circle amplification (RCA) and loop-mediated isothermal amplification (LAMP) are adopted and combined with a standard electron paramagnetic resonance (EPR) spectrometer for FMR biosensing. For RCA-based FMR biosensor, binding of RCA products of a synthetic Vibrio cholerae target DNA sequence gives rise to the formation of aggregates of magnetic nanoparticles. Immobilization of nanoparticles within the aggregates leads to a decrease of the net anisotropy of the system and a concomitant increase of the resonance field. A limit of detection of 1 pM is obtained with an average coefficient of variation of 0.16%, which is superior to the performance of other reported RCA-based magnetic biosensors. For LAMP-based sensing, a synthetic Zika virus target oligonucleotide is amplified and detected in 20% serum samples. Immobilization of magnetic nanoparticles is induced by their co-precipitation with Mg<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (a by-product of LAMP) and provides a detection sensitivity of 100 aM. The fast measurement, high sensitivity and miniaturization potential of the proposed FMR biosensing technology makes it a promising candidate for designing future point-of-care devices.<br>


2020 ◽  
Vol 15 (15) ◽  
pp. 1483-1487
Author(s):  
Nikhil S Sahajpal ◽  
Ashis K Mondal ◽  
Allan Njau ◽  
Sudha Ananth ◽  
Kimya Jones ◽  
...  

RT-PCR-based assays for the detection of SARS-CoV-2 have played an essential role in the current COVID-19 pandemic. However, the sample collection and test reagents are in short supply, primarily due to supply chain issues. Thus, to eliminate testing constraints, we have optimized three key process variables: RNA extraction and RT-PCR reactions, different sample types and media to facilitate SARS-CoV-2 testing. By performing various validation and bridging studies, we have shown that various sample types such as nasopharyngeal swab, bronchioalveolar lavage and saliva, collected using conventional nasopharyngeal swabs, ESwab or 3D-printed swabs and, preserved in viral transport media, universal transport media, 0.9% sodium chloride or Amies media are compatible with RT-PCR assay for COVID-19. Besides, the reduction of PCR reagents by up to fourfold also produces reliable results.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3985
Author(s):  
Nan Wan ◽  
Yu Jiang ◽  
Jiamei Huang ◽  
Rania Oueslati ◽  
Shigetoshi Eda ◽  
...  

A sensitive and efficient method for microRNAs (miRNAs) detection is strongly desired by clinicians and, in recent years, the search for such a method has drawn much attention. There has been significant interest in using miRNA as biomarkers for multiple diseases and conditions in clinical diagnostics. Presently, most miRNA detection methods suffer from drawbacks, e.g., low sensitivity, long assay time, expensive equipment, trained personnel, or unsuitability for point-of-care. New methodologies are needed to overcome these limitations to allow rapid, sensitive, low-cost, easy-to-use, and portable methods for miRNA detection at the point of care. In this work, to overcome these shortcomings, we integrated capacitive sensing and alternating current electrokinetic effects to detect specific miRNA-16b molecules, as a model, with the limit of detection reaching 1.0 femto molar (fM) levels. The specificity of the sensor was verified by testing miRNA-25, which has the same length as miRNA-16b. The sensor we developed demonstrated significant improvements in sensitivity, response time and cost over other miRNA detection methods, and has application potential at point-of-care.


Sign in / Sign up

Export Citation Format

Share Document