scholarly journals Rapid and Sensitive Detection of miRNA Based on AC Electrokinetic Capacitive Sensing for Point-of-Care Applications

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3985
Author(s):  
Nan Wan ◽  
Yu Jiang ◽  
Jiamei Huang ◽  
Rania Oueslati ◽  
Shigetoshi Eda ◽  
...  

A sensitive and efficient method for microRNAs (miRNAs) detection is strongly desired by clinicians and, in recent years, the search for such a method has drawn much attention. There has been significant interest in using miRNA as biomarkers for multiple diseases and conditions in clinical diagnostics. Presently, most miRNA detection methods suffer from drawbacks, e.g., low sensitivity, long assay time, expensive equipment, trained personnel, or unsuitability for point-of-care. New methodologies are needed to overcome these limitations to allow rapid, sensitive, low-cost, easy-to-use, and portable methods for miRNA detection at the point of care. In this work, to overcome these shortcomings, we integrated capacitive sensing and alternating current electrokinetic effects to detect specific miRNA-16b molecules, as a model, with the limit of detection reaching 1.0 femto molar (fM) levels. The specificity of the sensor was verified by testing miRNA-25, which has the same length as miRNA-16b. The sensor we developed demonstrated significant improvements in sensitivity, response time and cost over other miRNA detection methods, and has application potential at point-of-care.

Biosensors ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Donggee Rho ◽  
Seunghyun Kim

An optical cavity-based biosensor (OCB) has been developed for point-of-care (POC) applications. This label-free biosensor employs low-cost components and simple fabrication processes to lower the overall cost while achieving high sensitivity using a differential detection method. To experimentally demonstrate its limit of detection (LOD), we conducted biosensing experiments with streptavidin and C-reactive protein (CRP). The optical cavity structure was optimized further for better sensitivity and easier fluid control. We utilized the polymer swelling property to fine-tune the optical cavity width, which significantly improved the success rate to produce measurable samples. Four different concentrations of streptavidin were tested in triplicate, and the LOD of the OCB was determined to be 1.35 nM. The OCB also successfully detected three different concentrations of human CRP using biotinylated CRP antibody. The LOD for CRP detection was 377 pM. All measurements were done using a small sample volume of 15 µL within 30 min. By reducing the sensing area, improving the functionalization and passivation processes, and increasing the sample volume, the LOD of the OCB are estimated to be reduced further to the femto-molar range. Overall, the demonstrated capability of the OCB in the present work shows great potential to be used as a promising POC biosensor.


2021 ◽  
Author(s):  
Ritika Gupta ◽  
Sunaina Kaul ◽  
Vishal Singh ◽  
Sandeep Kumar ◽  
Nitin Kumar Singhal

Abstract For maintaining the healthy metabolic status, vitamin D is a beneficial metabolite stored majorly in its pre-activated form, 25-hydroxyvitamin D3 (25(OH)D3). Due to its important role in bone strengthening, the study was planned to quantify 25(OH)D3 levels in our blood. Quantification techniques for 25(OH)D3 are costly thus requiring a need for a low cost, and sensitive detection methods. In this work, an economic, and sensitive sensor for the detection of 25(OH)D3 was developed using aptamer and graphene oxide (GO). Aptamer is an oligonucleotide, sensitive towards its target, whereas, GO with 2D nanosheets provides excellent quenching surface. Aptamer labeled with fluorescein (5’, 6-FAM) is adsorbed by π -π interaction on the GO sheets leading to quenching of the fluorescence due to Förster resonance energy transfer (FRET). However, in the presence of 25(OH)D3, a major portion of aptamer fluorescence remains unaltered, due to its association with 25(OH)D3. However, in the absence, aptamer fluorescence gets fully quenched. Fluorescence intensity quenching was monitored using fluorescence spectrophotometer and agarose gel based system. The limit of detection of 25(OH)D3 by this method was found to be 0.15 µg/mL. Therefore, this method could come up as a new sensing method in the field of vitamin D detection.


2011 ◽  
Vol 57 (5) ◽  
pp. 753-761 ◽  
Author(s):  
Ulrich Y Schaff ◽  
Greg J Sommer

BACKGROUND Centrifugal “lab on a disk” microfluidics is a promising avenue for developing portable, low-cost, automated immunoassays. However, the necessity of incorporating multiple wash steps results in complicated designs that increase the time and sample/reagent volumes needed to run assays and raises the probability of errors. We present proof of principle for a disk-based microfluidic immunoassay technique that processes blood samples without conventional wash steps. METHODS Microfluidic disks were fabricated from layers of patterned, double-sided tape and polymer sheets. Sample was mixed on-disk with assay capture beads and labeling antibodies. Following incubation, the assay beads were physically separated from the blood cells, plasma, and unbound label by centrifugation through a density medium. A signal-laden pellet formed at the periphery of the disk was analyzed to quantify concentration of the target analyte. RESULTS To demonstrate this technique, the inflammation biomarkers C-reactive protein and interleukin-6 were measured from spiked mouse plasma and human whole blood samples. On-disk processing (mixing, labeling, and separation) facilitated direct assays on 1-μL samples with a 15-min sample-to-answer time, <100 pmol/L limit of detection, and 10% CV. We also used a unique single-channel multiplexing technique based on the sedimentation rate of different size or density bead populations. CONCLUSIONS This portable microfluidic system is a promising method for rapid, inexpensive, and automated detection of multiple analytes directly from a drop of blood in a point-of-care setting.


Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 15
Author(s):  
Bukola Attoye ◽  
Matthew Baker ◽  
Chantevy Pou ◽  
Fiona Thomson ◽  
Damion K. Corrigan

Liquid biopsies are becoming increasingly important as a potential replacement for existing biopsy procedures which can be invasive, painful and compromised by tumour heterogeneity. This paper reports a simple electrochemical approach tailored towards point-of-care cancer detection and treatment monitoring from biofluids using a label-free detection strategy. The mutations under test were the KRAS G12D and G13D mutations, which are both important in the development and progression of many human cancers and which have a presence that correlates with poor outcomes. These common circulating tumour markers were investigated in clinical samples and amplified by standard and specialist PCR methodologies for subsequent electrochemical detection. Following pre-treatment of the sensor to present a clean surface, DNA probes developed specifically for detection of the KRAS G12D and G13D mutations were immobilized onto low-cost carbon electrodes using diazonium chemistry and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide coupling. Following the functionalisation of the sensor, it was possible to sensitively and specifically detect a mutant KRAS G13D PCR product against a background of wild-type KRAS DNA from the representative cancer sample. Our findings give rise to the basis of a simple and very low-cost system for measuring ctDNA biomarkers in patient samples. The current time to result of the system was 3.5 h with considerable scope for optimisation, and it already compares favourably to the UK National Health Service biopsy service where patients can wait weeks for their result. This paper reports the technical developments we made in the production of consistent carbon surfaces for functionalisation, assay performance data for KRAS G13D and detection of PCR amplicons under ambient conditions.


2016 ◽  
Vol 2 (3_suppl) ◽  
pp. 14s-14s
Author(s):  
Benjamin A. Katchman ◽  
Joseph T. Smith ◽  
Jennifer Blain Christen ◽  
Karen S. Anderson

Abstract 62 One of the key roadblocks limiting the transition of high-sensitivity and high-specificity point-of-care technologies from the research laboratory to wide spread use is the availability of a low-cost-high-volume manufacturing technology. This work presents a new interdisciplinary approach combining low cost commercial display manufacturing technology with programmable high density protein microarray printing technology to fabricate disposable point-of-care immunosensors with clinical level sensitivity. Our approach is designed to leverage advances in commercial display technology to reduce pre-functionalized biosensor substrate costs to pennies per cm2, as well as to leverage the display industry’s ability to manufacture an immense number of low cost consumer electronic products annually. For this work, we demonstrate that our new approach can offer diagnostic sensitivity at or below 10 pg/mL, which approaches the lower limit of detection of typical clinical laboratory instrumentation. Our new approach is also designed to overcome the limited analytical sensitivity of existing POC devices (>100x improved sensitivity). It also contains new capability for multiplexed biomarker detection (>10 antigens) in a single low cost POC device through an innovative disposable and scalable architecture, based on flat panel display technology. Here, we demonstrate multiplexed detection of antibodies to the HPV16 proteins E2, E6, and E7, which are circulating biomarkers for cervical as well as head and neck cancers. This detection technology has 100 percent correlation to our current laboratory-based measurement instrumentation. AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST: Benjamin A. Katchman Patents, Royalties, Other Intellectual Property: Arizona State University Joseph T. Smith Patents, Royalties, Other Intellectual Property: Arizona State University Jennifer Blain Christen Patents, Royalties, Other Intellectual Property: Arizona State University Karen S. Anderson Stock or Other Ownership: Provista Diagnostics Consulting or Advisory Role: Provista Diagnostics Patents, Royalties, Other Intellectual Property: Arizona State University


2019 ◽  
Author(s):  
Richard Bruch ◽  
Julia Baaske ◽  
Claire Chatelle ◽  
Mailin Meirich ◽  
Sibylle Madlener ◽  
...  

Non-coding small RNAs, such as microRNAs, are becoming the biomarkers of choice for multiple diseases in clinical diagnostics. A dysregulation of these microRNAs can be associated to many different diseases, such as cancer, dementia or cardiovascular conditions. The key for an effective treatment is an accurate initial diagnosis at an early stage, improving the patient’s survival chances. Here, we introduce a CRISPR/Cas13a powered microfluidic, integrated electrochemical biosensor for the on-site detection of microRNAs. Through this unique combination, the quantification of the potential tumor markers microRNA miR-19b and miR-20a has been realized without any nucleic acid amplification. With a readout time of 9 minutes and an overall process time of less than 4 hours, a limit of detection of 10 pM was achieved, using a measuring volume of less than 0.6 µl. Furthermore, we demonstrate the feasibility of our versatile sensor platform to detect miR-19b in serum samples of children, suffering from brain cancer. The validation of our results with a standard qRT-PCR method shows the ability of our system to be a low-cost and target amplification-free tool for nucleic acid based diagnostics.


2021 ◽  
Author(s):  
Yuan Liu ◽  
Taotao Li ◽  
Gaojian Yang ◽  
Yan Deng ◽  
Xianbo Mou ◽  
...  

Abstract Background Chlorpyrifos (Chl) is an organophosphorus pesticide, which has toxicity to environment, animals and human beings. To overcome the shortages of traditional detection methods of small molecular, this study aimed to develop a sensitive, simple, low cost and on-site rapid method for Chl analysis and detection. Thus, we developed a simple label-free gold nanoparticles (AuNPs) based colorimetric biosensor aptasensor for Chl detection using an aptamer as the caputure probe. Results The Chl-aptamer with low dissociation constant (Kd) of 58.59 ± 6.08 (nM) was selected by ssDNA library immobilized systematic evolution of ligands by enrichment (SELEX). In the absence of Chl, the Chl-aptamer acted as the stabilizer for AuNPs in salt solution. In the presence of Chl, the highly specific Chl-aptamer bound with Chl targets immediately thus a self-aggregation of AuNPs induced by salt was displayed. The fabricated colorimetric aptasensor exhibited an excellent sensitivity for Chl detection with the limit of detection as low as 14.46 nM. In addition, the aptasensor was applied to test Chl in tap water, cucumber and cabbage samples, which showed satisfying results with excellent recovery values between 96.2% and 105.6% and acceptable RSD values below 5%. Conclusions The developed colorimetric aptasensor can serve as a promising candidate for Chl detection in the area of biosensors, which also showed a great potential in simple, cheap and rapid detection of Chl.


Author(s):  
A. Ganguli ◽  
A. Mostafa ◽  
J. Berger ◽  
M. Aydin ◽  
F. Sun ◽  
...  

AbstractThe COVID-19 pandemic provides an urgent example where a gap exists between availability of state-of-the-art diagnostics and current needs. As assay details and primer sequences become widely known, many laboratories could perform diagnostic tests using methods such as RT-PCR or isothermal RT-LAMP amplification. A key advantage of RT-LAMP based approaches compared to RT-PCR is that RT-LAMP is known to be robust in detecting targets from unprocessed samples. In addition, RT-LAMP assays are performed at a constant temperature enabling speed, simplicity, and point-of-use testing. Here, we provide the details of an RT-LAMP isothermal assay for the detection of SARS-CoV-2 virus with performance comparable to currently approved tests using RT-PCR. We characterize the assay by introducing swabs in virus spiked synthetic nasal fluids, moving the swab to viral transport medium (VTM), and using a volume of that VTM for performing the amplification without an RNA extraction kit. The assay has a Limit-of-Detection (LOD) of 50 RNA copies/μL in the VTM solution within 20 minutes, and LOD of 5000 RNA copies/μL in the nasal solution. Additionally, we show the utility of this assay for real-time point-of-use testing by demonstrating detection of SARS-CoV-2 virus in less than 40 minutes using an additively manufactured cartridge and a smartphone-based reader. Finally, we explore the speed and cost advantages by comparing the required resources and workflows with RT-PCR. This work could accelerate the development and availability of SARS-CoV-2 diagnostics by proving alternatives to conventional laboratory benchtop tests.Significance StatementAn important limitation of the current assays for the detection of SARS-CoV-2 stem from their reliance on time- and labor-intensive and laboratory-based protocols for viral isolation, lysis, and removal of inhibiting materials. While RT-PCR remains the gold standard for performing clinical diagnostics to amplify the RNA sequences, there is an urgent need for alternative portable platforms that can provide rapid and accurate diagnosis, potentially at the point-of-use. Here, we present the details of an isothermal amplification-based detection of SARS-CoV-2, including the demonstration of a smartphone-based point-of-care device that can be used at the point of sample collection.


2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Lars D. Renner ◽  
Jindong Zan ◽  
Linda I. Hu ◽  
Manuel Martinez ◽  
Pedro J. Resto ◽  
...  

ABSTRACT An estimated 1.5 billion microbial infections occur globally each year and result in ∼4.6 million deaths. A technology gap associated with commercially available diagnostic tests in remote and underdeveloped regions prevents timely pathogen identification for effective antibiotic chemotherapies for infected patients. The result is a trial-and-error approach that is limited in effectiveness, increases risk for patients while contributing to antimicrobial drug resistance, and reduces the lifetime of antibiotics. This paper addresses this important diagnostic technology gap by describing a low-cost, portable, rapid, and easy-to-use microfluidic cartridge-based system for detecting the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) bacterial pathogens that are most commonly associated with antibiotic resistance. The point-of-care molecular diagnostic system consists of a vacuum-degassed microfluidic cartridge preloaded with lyophilized recombinase polymerase amplification (RPA) assays and a small portable battery-powered electronic incubator/reader. The isothermal RPA assays detect the targeted ESKAPE pathogens with high sensitivity (e.g., a limit of detection of ∼10 nucleic acid molecules) that is comparable to that of current PCR-based assays, and they offer advantages in power consumption, engineering, and robustness, which are three critical elements required for the point-of-care setting. IMPORTANCE This paper describes a portable system for rapidly identifying bacteria in resource-limited environments; we highlight the capabilities of the technology by detecting different pathogens within the ESKAPE collection, which cause nosocomial infections. The system is designed around isothermal DNA-based assays housed within an autonomous plastic cartridge that are designed with the end user in mind, who may have limited technological training. Displaying excellent sensitivity and specificity, the assay systems that we demonstrate may enable future diagnoses of bacterial infection to guide the development of effective chemotherapies and may have a role in areas beyond health where rapid detection is valuable, including in industrial processing and manufacturing, food security, agriculture, and water quality testing.


Cellulose ◽  
2020 ◽  
Vol 27 (13) ◽  
pp. 7691-7701 ◽  
Author(s):  
Anusha Prabhu ◽  
M. S. Giri Nandagopal ◽  
Prakash Peralam Yegneswaran ◽  
Hardik Ramesh Singhal ◽  
Naresh Kumar Mani

Abstract We present a high resolution, ultra-frugal printing of paper microfluidic devices using in-house paraffin formulation on a simple filter paper. The patterns printed using an office inkjet printer formed a selective hydrophobic barrier of 4 ± 1 µm thickness with a hydrophilic channel width of 275 µm. These printed patterns effectively confine common aqueous solutions and solvents, which was verified by solvent compatibility studies. SEM analysis reveals that the solvent confinement is due to pore blockage in the filter paper. The fabricated paper-based device was validated for qualitative assessment of Candida albicans (pathogenic fungi) by using a combination of L-proline β-naphthylamide as the substrate and cinnamaldehyde as an indicator. Our studies reveal that the pathogenic fungi can be detected within 10 min with the limit of detection (LOD) of 0.86 × 106 cfu/mL. Owing to its simplicity, this facile method shows high potential and can be scaled up for developing robust paper-based devices for biomarker detection in resource-limited settings. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document