scholarly journals An insertion unique to SARS-CoV-2 exhibits superantigenic character strengthened by recent mutations

Author(s):  
Mary Hongying Cheng ◽  
She Zhang ◽  
Rebecca A. Porritt ◽  
Moshe Arditi ◽  
Ivet Bahar

Multisystem Inflammatory Syndrome in Children (MIS-C) associated with Coronavirus Disease 2019 (COVID-19) is a newly recognized condition in which children with recent SARS-CoV-2 infection present with a constellation of symptoms including hypotension, multiorgan involvement, and elevated inflammatory markers. These symptoms and the associated laboratory values strongly resemble toxic shock syndrome, an escalation of the cytotoxic adaptive immune response triggered upon the binding of pathogenic superantigens to MHCII molecules and T cell receptors (TCRs). Here, we used structure-based computational models to demonstrate that the SARS-CoV-2 spike (S) exhibits a high-affinity motif for binding TCR, interacting closely with both the α- and β-chains variable domains’ complementarity-determining regions. The binding epitope on S harbors a sequence motif unique to SARS-CoV-2 (not present in any other SARS coronavirus), which is highly similar in both sequence and structure to bacterial superantigens. Further examination revealed that this interaction between the virus and human T cells is strengthened in the context of a recently reported rare mutation (D839Y/N/E) from a European strain of SARS-CoV-2. Furthermore, the interfacial region includes selected residues from a motif shared between the SARS viruses from the 2003 and 2019 pandemics, which has intracellular adhesion molecule (ICAM)-like character. These data suggest that the SARS-CoV-2 S may act as a superantigen to drive the development of MIS-C as well as cytokine storm in adult COVID-19 patients, with important implications for the development of therapeutic approaches.SignificanceAlthough children have been largely spared from severe COVID-19 disease, a rare hyperinflammatory syndrome has been described in Europe and the East Coast of the United States, termed Multisystem Inflammatory Syndrome in Children (MISC). The symptoms and diagnostic lab values of MIS-C resemble those of toxic shock, typically caused by pathogenic superantigens stimulating excessive activation of the adaptive immune system. We show that SARS-CoV-2 spike has a sequence and structure motif highly similar to those of bacterial superantigens, and may directly bind to the T cell receptors. This sequence motif, not present in other coronaviruses, may explain the unique potential for SARS-CoV-2 to cause both MIS-C and the cytokine storm observed in adult COVID-19 patients.

Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 30
Author(s):  
Perrine Pégorier ◽  
Morgane Bertignac ◽  
Viviane Nguefack Ngoune ◽  
Géraldine Folch ◽  
Joumana Jabado-Michaloud ◽  
...  

The adaptive immune response provides the vertebrate immune system with the ability to recognize and remember specific pathogens to generate immunity, and mount stronger attacks each time the pathogen is encountered. T cell receptors are the antigen receptors of the adaptive immune response expressed by T cells, which specifically recognize processed antigens, presented as peptides by the highly polymorphic major histocompatibility (MH) proteins. T cell receptors (TR) are divided into two groups, αβ and γδ, which express distinct TR containing either α and β, or γ and δ chains, respectively. The TRα locus (TRA) and TRδ locus (TRD) of bovine (Bos taurus) and the sheep (Ovis aries) have recently been described and annotated by IMGT® biocurators. The aim of the present study is to present the results of the biocuration and to compare the genes of the TRA/TRD loci among these ruminant species based on the Homo sapiens repertoire. The comparative analysis shows similarities but also differences, including the fact that these two species have a TRA/TRD locus about three times larger than that of humans and therefore have many more genes which may demonstrate duplications and/or deletions during evolution.


2005 ◽  
Vol 353 (2) ◽  
pp. 308-321 ◽  
Author(s):  
Rebecca A. Buonpane ◽  
Beenu Moza ◽  
Eric J. Sundberg ◽  
David M. Kranz

2021 ◽  
Vol 17 (3) ◽  
pp. e1008814
Author(s):  
Emmi Jokinen ◽  
Jani Huuhtanen ◽  
Satu Mustjoki ◽  
Markus Heinonen ◽  
Harri Lähdesmäki

Adaptive immune system uses T cell receptors (TCRs) to recognize pathogens and to consequently initiate immune responses. TCRs can be sequenced from individuals and methods analyzing the specificity of the TCRs can help us better understand individuals’ immune status in different disorders. For this task, we have developed TCRGP, a novel Gaussian process method that predicts if TCRs recognize specified epitopes. TCRGP can utilize the amino acid sequences of the complementarity determining regions (CDRs) from TCRα and TCRβ chains and learn which CDRs are important in recognizing different epitopes. Our comprehensive evaluation with epitope-specific TCR sequencing data shows that TCRGP achieves on average higher prediction accuracy in terms of AUROC score than existing state-of-the-art methods in epitope-specificity predictions. We also propose a novel analysis approach for combined single-cell RNA and TCRαβ (scRNA+TCRαβ) sequencing data by quantifying epitope-specific TCRs with TCRGP and identify HBV-epitope specific T cells and their transcriptomic states in hepatocellular carcinoma patients.


2015 ◽  
Vol 24 (4) ◽  
pp. 473-479 ◽  
Author(s):  
Mihai Voiculescu

Hepatitis B virus (HBV) infection is a major health problem with an important biological and a significant socio-economic impact all over the world. There is a high pressure to come up with a new and more efficient strategy against HBV infection, especially after the recent success of HCV treatment. Preventing HBV infection through vaccine is currently the most efficient way to decrease HBV-related cirrhosis and liver cancer incidence, as well as the best way to suppress the HBV reservoir. The vaccine is safe and efficient in 80-95% of cases. One of its most important roles is to reduce materno-fetal transmission, by giving the first dose of vaccine in the first 24 hours after birth. Transmission of HBV infection early in life is still frequent, especially in countries with high endemicity.Successful HBV clearance by the host is immune-mediated, with a complex combined innate and adaptive cellular and humoral immune response. Different factors, such as the quantity and the sequence of HBV epitope during processing by dendritic cells and presenting by different HLA molecules or the polymorphism of T cell receptors (TOL) are part of a complex network which influences the final response. A new potential therapeutic strategy is to restore T-cell antiviral function and to improve innate and adaptive immune response by immunotherapeutic manipulation.It appears that HBV eradication is far from being completed in the next decades, and a new strategy against HBV infection must be considered. Abbreviations: ALT: alanine aminotransferase; APC: antigen presenting cells; cccDNA: covalently closed circular DNA; HBIG: hepatitis B immunoglobulin; HbsAg: hepatitis B surface antigen; HBV: hepatitis B virus; HCC: hepatocellular carcinoma; CTL: cytotoxic T lymphocyte; IFN: interferon; NUC: nucleos(t)ide analogues; pg RNA: pre genomic RNA; TLR: toll-like receptors; TOL: T cell receptors.


Sign in / Sign up

Export Citation Format

Share Document