scholarly journals Reliability of P3 Event-Related Potential during Working Memory Across the Spectrum of Cognitive Aging

Author(s):  
Hannes Devos ◽  
Jeffrey Burns ◽  
Ke Liao ◽  
Pedram Ahmadnezhad ◽  
Jonathan D. Mahnken ◽  
...  

AbstractEvent-related potentials (ERPs) offer unparalleled temporal resolution in tracing distinct electrophysiological processes related to normal and pathological cognitive aging. The stability of ERPs in older individuals, who inherently show more intraindividual variability in cognitive functions, has not been established. In this test-retest reliability study, 39 older individuals (age 74.10 (5.4) years; 23 (59%) women; 15 non β-amyloid elevated, 16 β-amyloid elevated, 8 cognitively impaired) with scores on the Montreal Cognitive Assessment (MOCA) ranging between 3 and 30 completed a working memory (n-back) test with three levels of difficulty at baseline and two-week follow-up. Stability of the ERP was evaluated on grand averaged task effects for both visits. P3 peak amplitude and latency were measured in frontal channels. P3 peak amplitude at Fz, our main outcome variable, showed excellent reliability in 0-back (intraclass correlation coefficient (ICC), 95% confidence interval = 0.82 (0.67 – 0.90) and 1-back (ICC = 0.87 (0.76 – 0.93), however, only fair reliability in 2-back (ICC = 0.53 (0.09 – 0.75). Reliability of P3 peak latencies was substantially lower, with ICCs ranging between 0.17 for 2-back and 0.54 for 0-back. Generalized linear mixed models showed no confounding effect of age, group, or task difficulty on stability of P3 amplitude and latency of Fz. By contrast, MOCA scores tended to negatively correlate with P3 amplitude of Fz (p=0.07). We conclude that P3 peak amplitude and latency provide a stable measure of electrophysiological processes in older individuals. However, impaired cognition may affect the stability of the ERP response.

Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1362
Author(s):  
Dean Wu ◽  
Cheng-Chang Yang ◽  
Kuan-Yu Chen ◽  
Ying-Chin Lin ◽  
Pei-Jung Wu ◽  
...  

Cognitive decline is an important issue of global public health. Cognitive aging might begin at middle adulthood, the period particularly vulnerable to stress in lifespan. Essence of chicken (EOC) has consistently demonstrated its beneficial effects on various cognitive domains as nutritional supplementation. This study primarily aimed to examine the cognitive enhancement effects of ProBeptigen® (previously named CMI-168), hydrolyzed peptides extracted from EOC, in healthy middle-aged people under mild stress. Ninety healthy subjects were randomly assigned into the ProBeptigen® or placebo group for eight weeks. Neurocognitive assessment, event-related potentials (ERPs), and blood tests were conducted before, during, and after the treatment. The ProBeptigen® group outperformed placebo group on Logical Memory subtests of Wechsler Memory Scale-third edition (WMS-III) and Spatial Working Memory task in the Cambridge Neuropsychological Test Automated Battery (CANTAB). The anti-inflammatory effects of ProBeptigen® in humans were also confirmed, with progressively declining high-sensitivity C-reactive protein (hs-CRP) levels. Regular dietary supplementation of ProBeptigen® is suggested to improve verbal short- and long-term memory as well as spatial working memory, and reduce inflammation in middle-aged healthy individuals with stress. The effects of ProBeptigen® on cognition warrant further investigation. (NCT03612752)


2002 ◽  
Vol 16 (2) ◽  
pp. 114-118 ◽  
Author(s):  
Timo Ruusuvirta ◽  
Heikki Hämäläinen

Abstract Human event-related potentials (ERPs) to a tone continuously alternating between its two spatial loci of origin (middle-standards, left-standards), to repetitions of left-standards (oddball-deviants), and to the tones originally representing these repetitions presented alone (alone-deviants) were recorded in free-field conditions. During the recordings (Fz, Cz, Pz, M1, and M2 referenced to nose), the subjects watched a silent movie. Oddball-deviants elicited a spatially diffuse two-peaked deflection of positive polarity. It differed from a deflection elicited by left-standards and commenced earlier than a prominent deflection of negative polarity (N1) elicited by alone-deviants. The results are discussed in the context of the mismatch negativity (MMN) and previous findings of dissociation between spatial and non-spatial information in auditory working memory.


2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


2015 ◽  
Vol 27 (3) ◽  
pp. 492-508 ◽  
Author(s):  
Nicholas E. Myers ◽  
Lena Walther ◽  
George Wallis ◽  
Mark G. Stokes ◽  
Anna C. Nobre

Working memory (WM) is strongly influenced by attention. In visual WM tasks, recall performance can be improved by an attention-guiding cue presented before encoding (precue) or during maintenance (retrocue). Although precues and retrocues recruit a similar frontoparietal control network, the two are likely to exhibit some processing differences, because precues invite anticipation of upcoming information whereas retrocues may guide prioritization, protection, and selection of information already in mind. Here we explored the behavioral and electrophysiological differences between precueing and retrocueing in a new visual WM task designed to permit a direct comparison between cueing conditions. We found marked differences in ERP profiles between the precue and retrocue conditions. In line with precues primarily generating an anticipatory shift of attention toward the location of an upcoming item, we found a robust lateralization in late cue-evoked potentials associated with target anticipation. Retrocues elicited a different pattern of ERPs that was compatible with an early selection mechanism, but not with stimulus anticipation. In contrast to the distinct ERP patterns, alpha-band (8–14 Hz) lateralization was indistinguishable between cue types (reflecting, in both conditions, the location of the cued item). We speculate that, whereas alpha-band lateralization after a precue is likely to enable anticipatory attention, lateralization after a retrocue may instead enable the controlled spatiotopic access to recently encoded visual information.


2020 ◽  
pp. 1-11
Author(s):  
Yang Jiang ◽  
Juan Li ◽  
Frederick A. Schmitt ◽  
Gregory A. Jicha ◽  
Nancy B. Munro ◽  
...  

Background: Early prognosis of high-risk older adults for amnestic mild cognitive impairment (aMCI), using noninvasive and sensitive neuromarkers, is key for early prevention of Alzheimer’s disease. We have developed individualized measures in electrophysiological brain signals during working memory that distinguish patients with aMCI from age-matched cognitively intact older individuals. Objective: Here we test longitudinally the prognosis of the baseline neuromarkers for aMCI risk. We hypothesized that the older individuals diagnosed with incident aMCI already have aMCI-like brain signatures years before diagnosis. Methods: Electroencephalogram (EEG) and memory performance were recorded during a working memory task at baseline. The individualized baseline neuromarkers, annual cognitive status, and longitudinal changes in memory recall scores up to 10 years were analyzed. Results: Seven of the 19 cognitively normal older adults were diagnosed with incident aMCI for a median 5.2 years later. The seven converters’ frontal brainwaves were statistically identical to those patients with diagnosed aMCI (n = 14) at baseline. Importantly, the converters’ baseline memory-related brainwaves (reduced mean frontal responses to memory targets) were significantly different from those who remained normal. Furthermore, differentiation pattern of left frontal memory-related responses (targets versus nontargets) was associated with an increased risk hazard of aMCI (HR = 1.47, 95% CI 1.03, 2.08). Conclusion: The memory-related neuromarkers detect MCI-like brain signatures about five years before diagnosis. The individualized frontal neuromarkers index increased MCI risk at baseline. These noninvasive neuromarkers during our Bluegrass memory task have great potential to be used repeatedly for individualized prognosis of MCI risk and progression before clinical diagnosis.


2006 ◽  
Vol 21 (2) ◽  
pp. 135-137 ◽  
Author(s):  
Ioannis A. Liappas ◽  
Charalabos C. Papageorgiou ◽  
Andreas D. Rabavilas

AbstractZolpidem is a GABA (A) agonist, which is indicated for the short-term management of insomnia. Recent research provide evidence suggesting that zolpidem produces spatial working memory (WM) deficits and dependence; however, the underlying mechanisms of these effects are unknown. Since the auditory N400 component of event-related potentials (ERPS) is considered as an index of memory use of context processing, the present study focused on N400 waveform of ERPs elicited during a WM task in a case suffering from zolpidem dependence. The patterns of N400 waveform of this case were compared to the patterns obtained from healthy controls. This comparison revealed that zolpidem dependence is accompanied by reduced amplitudes located at posterior brain areas and diffuse prolongation of N400. These findings may indicate that zolpidem dependence manifests alterations with regard to the memory use of context processing, involving or affecting a wide-ranging network of the brain's structures.


2019 ◽  
Author(s):  
Christine Salahub ◽  
Stephen Emrich

Individuals with anxiety have attentional biases toward threat-related distractors. This deficit in attentional control has been shown to impact visual working memory (VWM) filtering efficiency, as anxious individuals inappropriately store threatening distractors in VWM. It remains unclear, however, whether this mis-allocation of memory resources is due to inappropriate attentional enhancement of threatening distractors, or to a failure in suppression. Here, we used a systematically lateralized VWM task with fearful and neutral faces to examine event-related potentials related to attentional selection (N2pc), suppression (PD), and working memory maintenance (CDA). We found that state anxiety correlated with attentional enhancement of threat-related distractors, such that more anxious individuals had larger N2pc amplitudes toward fearful distractors than neutral distractors. However, there was no correlation between anxiety and memory storage of fearful distractors (CDA). These findings demonstrate that anxiety biases attention toward fearful distractors, but that this bias does not always guarantee increased memory storage of threat-related distractors.


Sign in / Sign up

Export Citation Format

Share Document