scholarly journals The impact of the undetected COVID-19 cases on its transmission dynamics

Author(s):  
Sujata Saha ◽  
Sumanta Saha

AbstractObjectiveThe COVID-19 pandemic is currently ongoing. Presently, due to the unavailability of a definitive vaccine to decrease its acquiring, it’s essential to understand its transmissibility in the community by undetected cases to control its transmission. This study aims to study this context using mathematical modelling.MethodsA COVID-19 transmission model was framed that estimated the basic reproduction number (R0, a measurement of disease risk) using the next-generation method. It explored the contribution of exposed and infected (detected and undetected) individuals, and environmental pathogen to the overall risk of infection spreading, utilizing the publicly reported data of this infection in Maharashtra between March 22, 2020, and May 4, 2020. A sensitivity analysis was performed to study the effect of a rising number of undetected cases to R0.ResultsThe estimated basic reproduction number is R0 = 4.63, which increases rapidly with the rise in the undetected COVID-19 cases. Although the exposed individuals made the largest contribution to infection transmission (R1 = 2.42), the contaminated environment also played a significant role.ConclusionsIt is crucial to identify the individuals exposed and infected to COVID-19 disease and isolate them to control its transmission. The awareness of the role of fomites in infection transmission is also important in this regard.

2008 ◽  
Vol 136 (11) ◽  
pp. 1496-1510 ◽  
Author(s):  
C. LANZAS ◽  
S. BRIEN ◽  
R. IVANEK ◽  
Y. LO ◽  
P. P. CHAPAGAIN ◽  
...  

SUMMARYThe objective of this study was to address the impact of heterogeneity of infectious period and contagiousness onSalmonellatransmission dynamics in dairy cattle populations. We developed three deterministic SIR-type models with two basic infected stages (clinically and subclinically infected). In addition, model 2 included long-term shedders, which were defined as individuals with low contagiousness but long infectious period, and model 3 included super-shedders (individuals with high contagiousness and long infectious period). The simulated dynamics, basic reproduction number (R0) and critical vaccination threshold were studied. Clinically infected individuals were the main force of infection transmission for models 1 and 2. Long-term shedders had a small impact on the transmission of the infection and on the estimated vaccination thresholds. The presence of super-shedders increasesR0and decreases the effectiveness of population-wise strategies to reduce infection, making necessary the application of strategies that target this specific group.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ganna Rozhnova ◽  
Christiaan H. van Dorp ◽  
Patricia Bruijning-Verhagen ◽  
Martin C. J. Bootsma ◽  
Janneke H. H. M. van de Wijgert ◽  
...  

AbstractThe role of school-based contacts in the epidemiology of SARS-CoV-2 is incompletely understood. We use an age-structured transmission model fitted to age-specific seroprevalence and hospital admission data to assess the effects of school-based measures at different time points during the COVID-19 pandemic in the Netherlands. Our analyses suggest that the impact of measures reducing school-based contacts depends on the remaining opportunities to reduce non-school-based contacts. If opportunities to reduce the effective reproduction number (Re) with non-school-based measures are exhausted or undesired and Re is still close to 1, the additional benefit of school-based measures may be considerable, particularly among older school children. As two examples, we demonstrate that keeping schools closed after the summer holidays in 2020, in the absence of other measures, would not have prevented the second pandemic wave in autumn 2020 but closing schools in November 2020 could have reduced Re below 1, with unchanged non-school-based contacts.


2021 ◽  
Author(s):  
Ganna Rozhnova ◽  
Christiaan van Dorp ◽  
Patricia Bruijning-Verhagen ◽  
Martin Bootsma ◽  
Janneke van de Wijgert ◽  
...  

Abstract The role of school-based contacts in the epidemiology of SARS-CoV-2 is incompletely understood. We used an age-structured transmission model fitted to age-specific seroprevalence and hospital admission data to assess the effects of school-based measures at different time points during the COVID-19 pandemic in the Netherlands. Our analyses suggest that the impact of measures reducing school-based contacts depends on the remaining opportunities to reduce non-school-based contacts. If opportunities to reduce the effective reproduction number (Re) with non-school-based measures are exhausted or undesired and Re is still close to 1, the additional benefit of school-based measures may be considerable, particularly among older school children. As two examples, we demonstrate that keeping schools closed after the summer holidays in 2020, in the absence of other measures, would not have prevented the second pandemic wave in autumn 2020 but closing schools in November 2020 could have reduced Re below 1, with unchanged non-school-based contacts.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yali Yang ◽  
Chenping Guo ◽  
Luju Liu ◽  
Tianhua Zhang ◽  
Weiping Liu

The statistical data of monthly pulmonary tuberculosis (TB) incidence cases from January 2004 to December 2012 show the seasonality fluctuations in Shaanxi of China. A seasonality TB epidemic model with periodic varying contact rate, reactivation rate, and disease-induced death rate is proposed to explore the impact of seasonality on the transmission dynamics of TB. Simulations show that the basic reproduction number of time-averaged autonomous systems may underestimate or overestimate infection risks in some cases, which may be up to the value of period. The basic reproduction number of the seasonality model is appropriately given, which determines the extinction and uniform persistence of TB disease. If it is less than one, then the disease-free equilibrium is globally asymptotically stable; if it is greater than one, the system at least has a positive periodic solution and the disease will persist. Moreover, numerical simulations demonstrate these theorem results.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Victor Yiga ◽  
Hasifa Nampala ◽  
Julius Tumwiine

Malaria is one of the world’s most prevalent epidemics. Current control and eradication efforts are being frustrated by rapid changes in climatic factors such as temperature and rainfall. This study is aimed at assessing the impact of temperature and rainfall abundance on the intensity of malaria transmission. A human host-mosquito vector deterministic model which incorporates temperature and rainfall dependent parameters is formulated. The model is analysed for steady states and their stability. The basic reproduction number is obtained using the next-generation method. It was established that the mosquito population depends on a threshold value θ , defined as the number of mosquitoes produced by a female Anopheles mosquito throughout its lifetime, which is governed by temperature and rainfall. The conditions for the stability of the equilibrium points are investigated, and it is shown that there exists a unique endemic equilibrium which is locally and globally asymptotically stable whenever the basic reproduction number exceeds unity. Numerical simulations show that both temperature and rainfall affect the transmission dynamics of malaria; however, temperature has more influence.


2021 ◽  
Vol 4 (1) ◽  
pp. 46-64
Author(s):  
Muhammad Afief Balya ◽  
Bunga Oktaviani Dewi ◽  
Faza Indah Lestari ◽  
Gayatri Ratu ◽  
Hanna Rosuliyana ◽  
...  

In this article, we propose and analyze a mathematical model of COVID-19 transmission among a closed population, with social awareness and rapid test intervention as the control variables. For this, we have constructed the model using a compartmental system of the ordinary differential equations. Dynamical analysis regarding the existence and local stability of equilibrium points is conducted rigorously. Our analysis shows that COVID-19 will disappear from the population if the basic reproduction number is less than one, and persist if the basic reproduction number is greater than one. In addition, we have shown a trans-critical bifurcation phenomenon based on our proposed model when the basic reproduction number equals one. From the elasticity analysis, we have observed that rapid testing is more promising in reducing the basic reproduction number as compared to a media campaign to improve social awareness on COVID-19. Using the Pontryagin Maximum Principle (PMP), the characterization of our optimal control problem is derived analytically and solved numerically using the forward-backward iterative algorithm. Our cost-effectiveness analysis shows that using rapid test and media campaigns partially are the best intervention strategy to reduce the number of infected humans with the minimum cost of intervention. If the intervention is to be implemented as a single intervention, then using solely the rapid test is a more promising and low-cost option in reducing the number of infected individuals vis-a-vis a media campaign to increase social awareness as a single intervention.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ganga Ram Phaijoo ◽  
Dil Bahadur Gurung

Dengue is a vector-borne infectious disease endemic in many parts of the world. The disease is spreading in new places due to human movement into the dengue disease supporting areas. Temperature is the major climatic factor which affects the biological processes of the mosquitoes and their interaction with the viruses. In the present work, we propose a multipatch model to assess the impact of temperature and human movement in the transmission dynamics of dengue disease. The work consists of system of ordinary differential equations that describe the transmission dynamics of dengue disease between humans and mosquitoes. Human population is divided into four classes: susceptible, exposed, infectious, and recovered. Mosquito population is divided into three classes: susceptible, exposed, and infectious. Basic reproduction numberR0of the model is obtained using Next-Generation Matrix method. The qualitative analysis of the model is made in terms of the basic reproduction number. Parameters used in the model are considered temperature dependent. Dynamics of vector and host populations are investigated with different human movement rates and different temperature levels. Numerical results show that proper management of human movement between patches helps reducing the burden of dengue disease. It is also seen that the temperature affects the transmission dynamics of the disease significantly.


Author(s):  
Temidayo Oluwafemi ◽  
Emmanuel Azuaba

Malaria continues to pose a major public health challenge, especially in developing countries, 219 million cases of malaria were estimated in 89 countries. In this paper, a mathematical model using non-linear differential equations is formulated to describe the impact of hygiene on Malaria transmission dynamics, the model is analyzed. The model is divided into seven compartments which includes five human compartments namely; Unhygienic susceptible human population, Hygienic Susceptible Human population, Unhygienic infected human population , hygienic infected human population and the Recovered Human population  and the mosquito population is subdivided into susceptible mosquitoes  and infected mosquitoes . The positivity of the solution shows that there exists a domain where the model is biologically meaningful and mathematically well-posed. The Disease-Free Equilibrium (DFE) point of the model is obtained, we compute the Basic Reproduction Number using the next generation method and established the condition for Local stability of the disease-free equilibrium, and we thereafter obtained the global stability of the disease-free equilibrium by constructing the Lyapunov function of the model system. Also, sensitivity analysis of the model system was carried out to identify the influence of the parameters on the Basic Reproduction Number, the result shows that the natural death rate of the mosquitoes is most sensitive to the basic reproduction number.


Author(s):  
Rodah Jerubet ◽  
George Kimathi ◽  
Mary Wanaina

Mycobacterium tuberculosis is the causative agent of Tuberculosis in humans [1,2]. A mathematical model that explains the transmission of Tuberculosis is developed. The model consists of four compartments; the susceptible humans, the infectious humans, the latently infected humans, and the recovered humans. We conducted an analysis of the disease-free equilibrium and endemic equilibrium points. We also computed the basic reproduction number using the next generation matrix approach. The disease-free equilibrium was found to be asymptotically stable if the reproduction number was less than one. The most sensitive parameter to the basic reproduction number was also determined using sensitivity analysis. Recruitment and contact rate are the most sensitive parameter that contributes to the basic reproduction number. Ordinary Differential Equations is used in the for­mulation of the model equations. The Tuberculosis model is analyzed in order to give a proper account of the impact of its transmission dynamics and the effect of the latent stage in TB transmission. The steady state's solution of the model is investigated. The findings showed that as more people come into contact with infectious individuals, the spread of TB would increase. The latent rate of infection below a critical value makes TB infection to persist.   However, the recovery rate of infectious individuals is an indication that the spread of the disease will reduce with time which could help curb TB transmission. 


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fatima Khadadah ◽  
Abdullah A. Al-Shammari ◽  
Ahmad Alhashemi ◽  
Dari Alhuwail ◽  
Bader Al-Saif ◽  
...  

Abstract Background Aggressive non-pharmaceutical interventions (NPIs) may reduce transmission of SARS-CoV-2. The extent to which these interventions are successful in stopping the spread have not been characterized in countries with distinct socioeconomic groups. We compared the effects of a partial lockdown on disease transmission among Kuwaitis (P1) and non-Kuwaitis (P2) living in Kuwait. Methods We fit a modified metapopulation SEIR transmission model to reported cases stratified by two groups to estimate the impact of a partial lockdown on the effective reproduction number ($$ {\mathcal{R}}_e $$ R e ). We estimated the basic reproduction number ($$ {\mathcal{R}}_0 $$ R 0 ) for the transmission in each group and simulated the potential trajectories of an outbreak from the first recorded case of community transmission until 12 days after the partial lockdown. We estimated $$ {\mathcal{R}}_e $$ R e values of both groups before and after the partial curfew, simulated the effect of these values on the epidemic curves and explored a range of cross-transmission scenarios. Results We estimate $$ {\mathcal{R}}_e $$ R e at 1·08 (95% CI: 1·00–1·26) for P1 and 2·36 (2·03–2·71) for P2. On March 22nd, $$ {\mathcal{R}}_e $$ R e for P1 and P2 are estimated at 1·19 (1·04–1·34) and 1·75 (1·26–2·11) respectively. After the partial curfew had taken effect, $$ {\mathcal{R}}_e $$ R e for P1 dropped modestly to 1·05 (0·82–1·26) but almost doubled for P2 to 2·89 (2·30–3·70). Our simulated epidemic trajectories show that the partial curfew measure greatly reduced and delayed the height of the peak in P1, yet significantly elevated and hastened the peak in P2. Modest cross-transmission between P1 and P2 greatly elevated the height of the peak in P1 and brought it forward in time closer to the peak of P2. Conclusion Our results indicate and quantify how the same lockdown intervention can accentuate disease transmission in some subpopulations while potentially controlling it in others. Any such control may further become compromised in the presence of cross-transmission between subpopulations. Future interventions and policies need to be sensitive to socioeconomic and health disparities.


Sign in / Sign up

Export Citation Format

Share Document