scholarly journals Different protein metabolic strategies for growth during food-induced physiological plasticity

2020 ◽  
Author(s):  
Aimee Ellison ◽  
Amara Pouv ◽  
Douglas A. Pace

AbstractFood-induced morphological plasticity, a type of developmental plasticity, is a well-documented phenomenon in larvae of the echinoid echinoderm, Dendraster excentricus. A recent study in our lab has shown that this morphological plasticity is associated with significant physiological plasticity for growth. The goal of the current study was to measure several aspects of protein metabolism in larvae growing at different rates to understand the mechanistic basis for this physiological growth plasticity. Larvae of D. excentricus were fed rations of 1,000 (low-fed) or 10,000 (high-fed) algal cells mL−1. Primary measurements of protein growth, algal ingestion, aerobic metabolism, alanine transport and protein synthesis were used to model growth and protein metabolism. Relative protein growth rates were 6.0 and 12.2 % day−1 for low- and high-fed larvae, respectively. The energetic cost of protein synthesis was similar between both treatments at 4.91 J (mg protein synthesized)−1. Larvae in both treatments used about 50% of their metabolic energy production to fuel protein synthesis. Mass-specific rates of protein synthesis were also similar. The most important difference between low- and high-fed larvae were mass-specific rates of protein degradation. Low-fed larvae had relatively low rates of degradation early in development that increased with larval age, surpassing high-fed degradation rates at 20 days post-fertilization. Changes in protein depositional efficiency during development were similar to those of larval growth efficiency, indicating that differences in protein metabolism are largely responsible for whole-organism growth plasticity. Mass-specific alanine transport rates were about 2-times higher in low-fed larvae, demonstrating that the longer arms of low-fed larvae may be a mechanism for acquiring more dissolved nutrients from their environment. In total, these results provide an explanation for the differences in growth efficiency between low- and high-fed larvae and demonstrate the importance of protein degradation pathways in establishing these growth differences. These observations, together with previous studies measuring morphological and physiological plastic responses, allow for a more integrated understanding of developmental plasticity in echinoid larvae.

2021 ◽  
Vol 224 (4) ◽  
pp. jeb230748
Author(s):  
Aimee Ellison ◽  
Amara Pouv ◽  
Douglas A. Pace

ABSTRACTFood-induced morphological plasticity, a type of developmental plasticity, is a well-documented phenomenon in larvae of the echinoid echinoderm, Dendraster excentricus. A recent study in our lab has shown that this morphological plasticity is associated with significant physiological plasticity for growth. The goal of the current study was to measure several aspects of protein metabolism in larvae growing at different rates to understand the mechanistic basis for this physiological growth plasticity. Larvae of D. excentricus were fed rations of 1000 algal cells ml−1 (low-fed larvae) or 10,000 algal cells ml−1 (high-fed larvae). Relative protein growth rate was 6.0 and 12.2% day−1 for low- and high-fed larvae, respectively. The energetic cost of protein synthesis was similar for the two treatments at 4.91 J mg−1 protein synthesized. Larvae in both treatments used about 50% of their metabolic energy production to fuel protein synthesis. Mass-specific rates of protein synthesis were also similar. Large differences in mass-specific rates of protein degradation were observed. Low-fed larvae had relatively low rates of degradation early in development that increased with larval age, surpassing those of high-fed larvae at 20 days post-fertilization. Changes in protein depositional efficiency during development were similar to those of larval growth efficiency, indicating that differences in protein metabolism are largely responsible for whole-organism growth plasticity. Low-fed larvae also had alanine transport rates that were 2 times higher than those of high-fed larvae. In total, these results provide an explanation for the differences in growth efficiency between low- and high-fed larvae and allow for a more integrated understanding of developmental plasticity in echinoid larvae.


1997 ◽  
Vol 77 (2) ◽  
pp. 197-212 ◽  
Author(s):  
Jens Kondrup ◽  
Klaus Nielsen ◽  
Anders Juul

Patients with cirrhosis of the liver require an increased amount of protein to achieve N balance. However, the utilization of protein with increased protein intake, i.e. the slope from regression analysis of N balance v. intake, is highly efficient (Nielsen et al. 1995). In the present study, protein requirement and protein utilization were investigated further by measuring protein synthesis and degradation. In two separate studies, five or six patients with cirrhosis of the liver were refed on a balanced diet for an average of 2 or 4 weeks. Protein and energy intakes were doubled in both studies. Initial and final whole-body protein metabolism was measured in the fed state by primed continous [15N]glycine infusion. Refeeding caused a statistically significant increase of about 30% in protein synthesis in both studies while protein degradation was only slightly affected. The increase in protein synthesis was associated with significant increases in plasma concentrations of total amino acids (25%), leucine (58%), isoleucine (82%), valine (72%), proline (48%) and triiodothyronine (27%) while insulin, growth hormone, insulin-like growth factor (IGF)-I and IGF-binding protein-3 were not changed significantly. The results indicate that the efficient protein utilization is due to increased protein synthesis, rather than decreased protein degradation, and suggest that increases in plasma amino acids may be responsible for the increased protein synthesis. A comparison of the patients who had a normal protein requirement with the patients who had an increased protein requirement suggests that the increased protein requirement is due to a primary increase in protein degradation. It is speculated that this is due to low levels of IGF-I secondary to impaired liver function, since initial plasma concentration of IGF-I was about 25% of control values and remained low during refeeding.


2019 ◽  
Author(s):  
Xia Yan ◽  
Xuli Gao ◽  
Xin Peng ◽  
Jie Zhang ◽  
Xiufeng Ma ◽  
...  

AbstractWhether differences in regulation of protein metabolism and regeneration are involved in the different phenotypic adaptation mechanisms of muscle hypertrophy and atrophy in hibernators? Two fast-type muscles (diaphragm and gastrocnemius) in summer active and hibernating Daurian ground squirrels were selected to detect changes in cross-sectional area (CSA), fiber type distribution, and protein expression indicative of protein synthesis metabolism (protein expression of P-Akt, P-mTORC1, P-S6K1, and P-4E-BP1), protein degradation metabolism (MuRF1, atrogin-1, calpain-1, calpain-2, calpastatin, desmin, troponin T, Beclin1, and LC3-II), and muscle regeneration (MyoD, myogenin, and myostatin). Results showed the CSA of the diaphragm muscle increased significantly by 26.1%, whereas the CSA of the gastrocnemius muscle decreased significantly by 20.4% in the hibernation group compared with the summer active group. Both muscles displayed a significant fast-to-slow fiber-type transition in hibernation. Our study further indicated that increased protein synthesis, decreased protein degradation, and increased muscle regeneration potential contributed to diaphragm muscle hypertrophy, whereas decreased protein synthesis, increased protein degradation, and decreased muscle regeneration potential contributed to gastrocnemius muscle atrophy. In conclusion, the differences in muscle regeneration and regulatory pattern of protein metabolism may contribute to the different adaptive changes observed in the diaphragm and gastrocnemius muscles of ground squirrels.


1983 ◽  
Vol 210 (2) ◽  
pp. 323-330 ◽  
Author(s):  
W S Stirewalt ◽  
R B Low

Rates of protein synthesis and degradation were measured in the isolated rat epitrochlearis muscle by radiotracer techniques, by using the specific radioactivity of tRNA-bound amino acid as precursor for protein synthesis. The tissue maintained linear rates of protein synthesis for 3 h of incubation in the presence of amino acids and glucose and in the absence of insulin. Under these conditions, however, the muscles were in negative nitrogen balance, with rates of protein degradation exceeding rates of protein synthesis. Under steady-state conditions of labelling, the specific radioactivities of tRNA-bound leucine, phenylalanine and valine were significantly less than their respective values in the incubation medium, at concentrations in the medium varying from 1 to 10 times those in normal rat serum. Insulin caused a dose- and time-dependent increase in tRNA-based protein synthesis rates, more than doubling rates at 5 and 50 ng of insulin/ml. At the lower, physiological, concentration of insulin, the stimulation of protein synthesis was not observed until the third hour of incubation with the hormone, whereas the rate of protein synthesis at the higher concentration was elevated during the second hour. There were no delays in the stimulation by insulin of glucose conversion into glycogen. The delayed stimulatory effects of insulin on the rate of protein synthesis brought the tissue to a nitrogen balance near zero. The presence of the hormone also prevented the increase in the rate of protein degradation seen in the third hour of incubation in the absence of the hormone. These studies demonstrate the viability of the incubated rat epitrochlearis muscle with respect to protein metabolism and sensitivity to the protein anabolic effects of physiological concentrations of insulin, and indicate that the preparation is a suitable experimental model for the study of the control of protein metabolism in fast-twitch skeletal muscle.


1979 ◽  
Vol 178 (3) ◽  
pp. 725-731 ◽  
Author(s):  
R D Conde

The effect of hypophysectomy on the protein metabolism of the liver in vivo was studied. Fractional rates of protein synthesis and degradation were determined in the livers of normal and hypophysectomized rats. Synthesis was measured after the injection of massive amounts of radioactive leucine. Degradation was estimated either as the balance between synthesis and accumulation of stable liver proteins or from the disappearance of radioactivity from the proteins previously labelled by the injection of NaH14CO3. The results indicate that: (1) hypophysectomy diminishes the capacity of the liver to synthesize proteins in vivo, mainly of those that are exported as plasma proteins; (2) livers of both normal and hypophysectomized rats show identical protein-degradation rates, whereas plasma proteins are degraded slowly after hypophysectomy.


1998 ◽  
Vol 275 (4) ◽  
pp. E584-E593 ◽  
Author(s):  
Thomas C. Vary ◽  
Dominique Dardevet ◽  
Jean Grizard ◽  
Laure Voisin ◽  
Caroline Buffiere ◽  
...  

Skeletal muscle catabolism is a characteristic metabolic response to sepsis. We investigated the ability of physiological insulin (2 nM) or insulin-like growth factor I (IGF-I, 10 nM) concentrations to modify protein metabolism during incubation of epitrochlearis 2, 6, or 15 days after injection of live Escherichia coli. On days 2 and 6 postinfection, skeletal muscle exhibited an exacerbated negative protein balance resulting from both an inhibition in protein synthesis (25%) and an enhanced proteolysis (90%) compared with controls. By day 15 postinfection, protein balance in infected rats was significantly improved compared with either day 2 or 6. At this time, protein synthesis was augmented and protein degradation was decreased in infected rats relative to day 6. Insulin or IGF-I stimulated protein synthesis in muscles from septic and control rats in vitro to the same extent at each time point examined. The ability of insulin or IGF-I to limit protein degradation was severely blunted 48 h after infection. On day 6 postinfection, the effect of insulin or IGF-I to inhibit proteolysis was more pronounced than on day 2. Incubation with IGF-I limited proteolysis to a greater extent than insulin on both days in infected but not control rats. By day 15, insulin diminished proteolysis to the same extent as in controls. The results suggest that injection of bacteria causes fundamental derangements in protein metabolism that persist for days after infection.


2003 ◽  
Vol 284 (2) ◽  
pp. E302-E312 ◽  
Author(s):  
Jill A. Bush ◽  
Douglas G. Burrin ◽  
Agus Suryawan ◽  
Pamela M. J. O'Connor ◽  
Hanh V. Nguyen ◽  
...  

To differentiate the effect of somatotropin (ST) treatment on protein metabolism in the hindquarter (HQ) and portal-drained viscera (PDV), growing swine ( n = 20) treated with ST (0 or 150 μg · kg−1 · day−1) for 7 days were infused intravenously with NaH13CO3 and [2H5]phenylalanine and enterally with [1-13C]phenylalanine while in the fed state. Arterial, portal venous, and vena cava whole blood samples, breath samples, and blood flow measurements were obtained for determination of tissue and whole body phenylalanine kinetics under steady-state conditions. In the fed state, ST treatment decreased whole body phenylalanine flux, oxidation, and protein degradation without altering protein synthesis, resulting in an improvement in whole body net protein balance. Blood flow to the HQ (+80%), but not to the PDV, was increased with ST treatment. In the HQ and PDV, ST increased phenylalanine uptake (+44 and +23%, respectively) and protein synthesis (+43 and +41%, respectively), with no effect on protein degradation. In ST-treated and control pigs, phenylalanine was oxidized in the PDV (34–43% of enteral and arterial sources) but not the HQ. In both treatment groups, dietary (40%) rather than arterial (10%) extraction of phenylalanine predominated in gut amino acid metabolism, whereas localized blood flow influenced HQ amino acid metabolism. The results indicate that ST increases protein anabolism in young, growing swine by increasing protein synthesis in the HQ and PDV, with no effect on protein degradation. Differing results between the whole body and the HQ and PDV suggest that the effect of ST treatment on protein metabolism is tissue specific.


1991 ◽  
Vol 65 (2) ◽  
pp. 115-129 ◽  
Author(s):  
P. C. Bates ◽  
J. M. Pell

The responses of dwarf mice to dietary administration of clenbuterol (3 mg/kg diet), daily injections of growth hormone (15 μg/mouse per d) or both treatments combined were investigated and their actions, and any interactions, on whole-body growth, composition and protein metabolism, and muscle, liver and heart growth and protein metabolism, were studied at days 0, 4 and 8 of treatment. Growth hormone, with or without clenbuterol, induced an increase in body-weight growth and tail length growth; clenbuterol alone did not affect body-weight or tail length. Both growth hormone and clenbuterol reduced the percentage of whole-body fat and increased the protein:fat ratio. They also increased protein synthesis rates of whole body and muscle, although the magnitude of the increase was greater in response to growth hormone than to clenbuterol. Clenbuterol specifically induced growth of muscle, with a decrease in liver protein content, whereas growth hormone exhibited more general anabolic effects on tissue protein. Previous reports have suggested that effects of clenbuterol on skeletal muscle are mediated, at least in part, via decreased rates of protein degradation; we could find little evidence of any decrease in whole-body or tissue protein degradation and anabolic effects were largely due to increases in protein synthesis rates. However, small increases in muscle protein degradation rate were observed in response to growth hormone. Growth hormone induced a progressive increase in serum insulin-like growth factor-1 concentration, whereas there was no change with clenbuterol administration. Anabolic effects on whole-body and skeletal muscle protein metabolism, therefore, appear to be initially via independent mechanisms but are finally mediated by a common response (increased protein synthesis) in dwarf mice.


2012 ◽  
Vol 108 (12) ◽  
pp. 2190-2197 ◽  
Author(s):  
Chris G. Carter ◽  
Elena Mente ◽  
Robin (Katersky) Barnes ◽  
Ioannis Nengas

The present study aimed to measure tissue protein synthesis in sea bream fed isonitrogenous diets that contained 63, 55 and 50 % fishmeal; in the latter two diets, 16 and 27 % of the fishmeal protein was replaced with plant protein. Over a 35 d period, there were no differences in feed intake, growth or feed efficiency among the three diets. Protein metabolism was then measured in the liver and white muscle tissue as rates of protein synthesis and as the capacity for protein synthesis before feeding (0 h) and at different times after feeding (4–48 h). Diet did not have a significant effect on protein synthesis or on the capacity for protein synthesis in either tissue. The capacity for protein synthesis was not affected by time after feeding, and overall mean values were 81·02 (se 1·68) and 4·07 (se 0·94) mg RNA/g protein for the liver and white muscle, respectively. Liver and white muscle fractional rates of protein synthesis were significantly higher at 4–8 h, intermediate at 12 h and were not different among pre-feeding (0 h), 24 and 48 h. Overall, the indices of protein metabolism measured at various times over 48 h following feeding were closely aligned with measurements of feeding, growth and growth efficiency established over a longer time scale.


2012 ◽  
Vol 110 (2) ◽  
pp. 256-264 ◽  
Author(s):  
Xiangbing Mao ◽  
Xiangfang Zeng ◽  
Zhimin Huang ◽  
Junjun Wang ◽  
Shiyan Qiao

Leucine and leptin play important roles in regulating protein synthesis and degradation in skeletal muscles in vitro and in vivo. However, the objective of the present study was to determine whether leptin and leucine function synergistically in regulating protein metabolism of skeletal muscles. In the in vitro experiment, C2C12 myotubes were cultured for 2 h in the presence of 5 mm-leucine and/or 50 ng/ml of leptin. In the in vivo experiment, C57BL/6 and ob/ob mice were randomly assigned to be fed a non-purified diet supplemented with 3 % l-leucine or 2·04 % l-alanine (isonitrogenous control) for 14 d. Ob/ob mice were injected intraperitoneally with sterile PBS or recombinant mouse leptin (0·1 μg/g body weight) for 14 d. In C57BL/6 mice, dietary leucine supplementation increased (P< 0·05) plasma leptin, leptin receptor expression and protein synthesis in skeletal muscles, but reduced (P< 0·05) plasma urea and protein degradation in skeletal muscles. Dietary leucine supplementation and leptin injection increased the relative weight of the gastrocnemius and soleus muscles in ob/ob mice. Moreover, leucine and leptin treatments stimulated (P< 0·05) protein synthesis and inhibited (P< 0·05) protein degradation in C2C12 myotubes and skeletal muscles of ob/ob mice. There were interactions (P< 0·05) between the leucine and leptin treatments with regard to protein metabolism in C2C12 myotubes and soleus muscles of ob/ob mice but not in the gastrocnemius muscles of ob/ob mice. Collectively, these results suggest that leptin and leucine synergistically regulate protein metabolism in skeletal muscles both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document