scholarly journals BUB-1 targets PP2A:B56 to regulate chromosome congression during meiosis I in C. elegans oocytes

2020 ◽  
Author(s):  
Laura Bel Borja ◽  
Flavie Soubigou ◽  
Samuel J.P. Taylor ◽  
Conchita Fraguas Bringas ◽  
Jacqueline Budrewicz ◽  
...  

ABSTRACTProtein Phosphatase 2A (PP2A) is an heterotrimer composed of scaffolding (A), catalytic (C), and regulatory (B) subunits with various key roles during cell division. While A and C subunits form the core enzyme, the diversity generated by interchangeable B subunits dictates substrate specificity. Within the B subunits, B56-type subunits play important roles during meiosis in yeast and mice by protecting centromeric cohesion and stabilising the kinetochore-microtubule attachments. These functions are achieved through targeting of B56 subunits to centromere and kinetochore by Shugoshin and BUBR1. In the nematode Caenorhabditis elegans (C. elegans) the closest BUBR1 ortholog lacks the B56 interaction domain and the Shugoshin orthologue is not required for normal segregation during oocyte meiosis. Therefore, the role of PP2A in C. elegans female meiosis is not known. Here, we report that PP2A is essential for meiotic spindle assembly and chromosome dynamics during C. elegans female meiosis. Specifically, B56 subunits PPTR-1 and PPTR-2 associate with chromosomes during prometaphase I and regulate chromosome congression. The chromosome localization of B56 subunits does not require shugoshin orthologue SGO-1. Instead we have identified the kinase BUB-1 as the key B56 targeting factor to the chromosomes during meiosis. PP2A BUB-1 recruits PP2A:B56 to the chromosomes via dual mechanism: 1) PPTR-1/2 interacts with the newly identified LxxIxE short linear motif (SLiM) within a disordered region in BUB-1 in a phosphorylation-dependent manner; and 2) PPTR-2 can also be recruited to chromosomes in a BUB-1 kinase domain-dependent manner. Our results highlight a novel, BUB-1-dependent mechanism for B56 recruitment, essential for recruiting a pool of PP2A required for proper chromosome congression during meiosis I.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Laura Bel Borja ◽  
Flavie Soubigou ◽  
Samuel J P Taylor ◽  
Conchita Fraguas Bringas ◽  
Jacqueline Budrewicz ◽  
...  

Protein Phosphatase 2A (PP2A) is a heterotrimer composed of scaffolding (A), catalytic (C), and regulatory (B) subunits. PP2A complexes with B56 subunits are targeted by Shugoshin and BUBR1 to protect centromeric cohesion and stabilise kinetochore–microtubule attachments in yeast and mouse meiosis. In Caenorhabditis elegans, the closest BUBR1 orthologue lacks the B56-interaction domain and Shugoshin is not required for meiotic segregation. Therefore, the role of PP2A in C. elegans female meiosis is unknown. We report that PP2A is essential for meiotic spindle assembly and chromosome dynamics during C. elegans female meiosis. BUB-1 is the main chromosome-targeting factor for B56 subunits during prometaphase I. BUB-1 recruits PP2A:B56 to the chromosomes via a newly identified LxxIxE motif in a phosphorylation-dependent manner, and this recruitment is important for proper chromosome congression. Our results highlight a novel mechanism for B56 recruitment, essential for recruiting a pool of PP2A involved in chromosome congression during meiosis I.


2017 ◽  
Vol 216 (8) ◽  
pp. 2273-2282 ◽  
Author(s):  
Michelle T. Panzica ◽  
Harold C. Marin ◽  
Anne-Cecile Reymann ◽  
Francis J. McNally

Fertilization occurs during female meiosis in most animals, which raises the question of what prevents the sperm DNA from interacting with the meiotic spindle. In this study, we find that Caenorhabditis elegans sperm DNA stays in a fixed position at the opposite end of the embryo from the meiotic spindle while yolk granules are transported throughout the embryo by kinesin-1. In the absence of F-actin, the sperm DNA, centrioles, and organelles were transported as a unit with the yolk granules, resulting in sperm DNA within 2 µm of the meiotic spindle. F-actin imaging revealed a cytoplasmic meshwork that might restrict transport in a size-dependent manner. However, increasing yolk granule size did not slow their velocity, and the F-actin moved with the yolk granules. Instead, sperm contents connect to the cortical F-actin to prevent interaction with the meiotic spindle.


2021 ◽  
Author(s):  
Ian Daniel Wolff ◽  
Jeremy Alden Hollis ◽  
Sarah Marie Wignall

During the meiotic divisions in oocytes, microtubules are sorted and organized by motor proteins to generate a bipolar spindle in the absence of centrosomes. In most organisms, kinesin-5 family members crosslink and slide microtubules to generate outward force that promotes acentrosomal spindle bipolarity. However, the mechanistic basis for how other kinesin families act on acentrosomal spindles has not been explored. We investigated this question in C. elegans oocytes, where kinesin-5 is not required to generate outward force. Instead, the kinesin-12 family motor KLP-18 performs this function. KLP-18 acts with adaptor protein MESP-1 (meiotic spindle 1) to sort microtubule minus ends to the periphery of a microtubule array, where they coalesce into spindle poles. If either of these proteins is depleted, outward sorting of microtubules is lost and minus ends converge to form a monoaster. Here we use a combination of in vitro biochemical assays and in vivo mutant analysis to provide insight into the mechanism by which these proteins collaborate to promote acentrosomal spindle assembly. We identify a microtubule binding site on the C-terminal stalk of KLP-18 and demonstrate that a direct interaction between the KLP-18 stalk and MESP-1 activates non-motor microtubule binding. We also provide evidence that this C-terminal domain is required for KLP-18 activity during spindle assembly and show that KLP-18 is continuously required to maintain spindle bipolarity. This study thus provides new insight into the construction and maintenance of the oocyte acentrosomal spindle as well as into kinesin-12 mechanism and regulation.


2006 ◽  
Vol 175 (6) ◽  
pp. 881-891 ◽  
Author(s):  
Karen McNally ◽  
Anjon Audhya ◽  
Karen Oegema ◽  
Francis J. McNally

Accurate control of spindle length is a conserved feature of eukaryotic cell division. Lengthening of mitotic spindles contributes to chromosome segregation and cytokinesis during mitosis in animals and fungi. In contrast, spindle shortening may contribute to conservation of egg cytoplasm during female meiosis. Katanin is a microtubule-severing enzyme that is concentrated at mitotic and meiotic spindle poles in animals. We show that inhibition of katanin slows the rate of spindle shortening in nocodazole-treated mammalian fibroblasts and in untreated Caenorhabditis elegans meiotic embryos. Wild-type C. elegans meiotic spindle shortening proceeds through an early katanin-independent phase marked by increasing microtubule density and a second, katanin-dependent phase that occurs after microtubule density stops increasing. In addition, double-mutant analysis indicated that γ-tubulin–dependent nucleation and microtubule severing may provide redundant mechanisms for increasing microtubule number during the early stages of meiotic spindle assembly.


2021 ◽  
Author(s):  
Elvira Nikalayevich ◽  
Safia El Jailani ◽  
Damien Cladiere ◽  
Yulia Gryaznova ◽  
Celia Fosse ◽  
...  

To generate haploid gametes, cohesin is removed in a stepwise manner from chromosome arms in meiosis I and the centromere region in meiosis II, to segregate chromosomes and sister chromatids, respectively. Meiotic cohesin removal requires cleavage of the meiosis-specific kleisin subunit Rec8 by the protease Separase[1, 2]. In yeast, Rec8 is kept in a non-phosphorylated state by the action of PP2A-B56, which is localised to the centromere region, thereby preventing cohesin removal from this region in meiosis I[3-5]. However, it is unknown whether Rec8 has to be equally phosphorylated for cleavage, and whether centromeric cohesin protection is indeed brought about by dephosphorylation of Rec8 preventing cleavage, in mammalian meiosis. The identity of one or several potential Rec8-specific kinase(s) is also unknown. This is due to technical challenges, as Rec8 is poorly conserved preventing a direct translation of the knowledge gained from model systems such as yeast and C. elegans to mammals, and additionally, there is no turn-over of Rec8 after cohesion establishment, preventing phospho mutant analysis of functional Rec8. To address how Rec8 cleavage is brought about in mammals, we adapted a biosensor for Separase to study Rec8 cleavage in single mouse oocytes by live imaging, and identified phosphorylation sites promoting cleavage. We found that Rec8 cleavage by Separase depends on Aurora B/C kinase activity, and identified a residue promoting cleavage and being phosphorylated in an Aurora B/C kinase-dependent manner. Accordingly, inhibition of Aurora B/C kinase during meiotic maturation impairs endogenous Rec8 phosphorylation and chromosome segregation.


2020 ◽  
Author(s):  
Laura Bel Borja ◽  
Flavie Soubigou ◽  
Samuel J P Taylor ◽  
Conchita Fraguas Bringas ◽  
Jacqueline Budrewicz ◽  
...  

2020 ◽  
Vol 10 (5) ◽  
pp. 1765-1774
Author(s):  
Ahmed Majekodunmi ◽  
Amelia O. Bowen ◽  
William D. Gilliland

The physical connections established by recombination are normally sufficient to ensure proper chromosome segregation during female Meiosis I. However, nonexchange chromosomes (such as the Muller F element or “dot” chromosome in D. melanogaster) can still segregate accurately because they remain connected by heterochromatic tethers. A recent study examined female meiosis in the closely related species D. melanogaster and D. simulans, and found a nearly twofold difference in the mean distance the obligately nonexchange dot chromosomes were separated during Prometaphase. That study proposed two speculative hypotheses for this difference, the first being the amount of heterochromatin in each species, and the second being the species’ differing tolerance for common inversions in natural populations. We tested these hypotheses by examining female meiosis in 12 additional Drosophila species. While neither hypothesis had significant support, we did see 10-fold variation in dot chromosome sizes, and fivefold variation in the frequency of chromosomes out on the spindle, which were both significantly correlated with chromosome separation distances. In addition to demonstrating that heterochromatin abundance changes chromosome behavior, this implies that the duration of Prometaphase chromosome movements must be proportional to the size of the F element in these species. Additionally, we examined D. willistoni, a species that lacks a free dot chromosome. We observed that chromosomes still moved out on the meiotic spindle, and the F element was always positioned closest to the spindle poles. This result is consistent with models where one role of the dot chromosomes is to help organize the meiotic spindle.


1994 ◽  
Vol 126 (1) ◽  
pp. 199-209 ◽  
Author(s):  
S Clark-Maguire ◽  
P E Mains

Genetic evidence suggests that the product of the mei-1 gene of Caenorhabditis elegans is specifically required for meiosis in the female germline. Loss-of-function mei-1 mutations block meiotic spindle formation while a gain-of-function allele instead results in spindle defects during the early mitotic cleavages. In this report, we use immunocytochemistry to examine the localization of the mei-1 product in wild-type and mutant embryos. During metaphase of meiosis I in wild-type embryos, mei-1 protein was found throughout the spindle but was more concentrated toward the poles. At telophase I, mei-1 product colocalized with the chromatin at the spindle poles. The pattern was repeated during meiosis II but no mei-1 product was visible during the subsequent mitotic cleavages. The mei-1 gain-of-function allele resulted in ectopic mei-1 staining in the centers of the microtubule-organizing centers during interphase and in the spindles during the early cleavages. This aberrant localization is probably responsible for the poorly formed and misoriented cleavage spindles characteristic of the mutation. We also examined the localization of mei-1(+) product in the presence of mutations of genes that genetically interact with mei-1 alleles. mei-2 is apparently required to localize mei-1 product to the spindle during meiosis while mel-26 acts as a postmeiotic inhibitor. We conclude that mei-1 encodes a novel spindle component, one that is specialized for the acentriolar meiotic spindles unique to female meiosis. The genes mei-2 and mel-26 are part of a regulatory network that confines mei-1 activity to meiosis.


2017 ◽  
Author(s):  
Miguel A. Brieño-Enríquez ◽  
Stefannie L. Moak ◽  
J. Kim Holloway ◽  
Paula E. Cohen

Summary statement:NEK1 kinase regulates the assembly and function of the meiosis I spindle by phosphorylating α-adducin (ADD1) and thereby facilitating its interaction with Myosin X (MYO10)Abstract:NIMA-related kinase 1 (NEK1) is a serine/threonine and tyrosine kinase that is highly expressed in mammalian germ cells. Mutations in Nek1 induce anemia, polycystic kidney and infertility. In this study we evaluated the role of NEK1 in meiotic spindle formation in both male and female gametes. Our results show that the lack of NEK1 provokes an abnormal organization of the meiosis I spindle characterized by elongated and/or multipolar spindles, and abnormal chromosome congression. The aberrant spindle structure is concomitant with the disruption in localization and protein levels of myosin X (MYO10) and α-adducin (ADD1), both of which are implicated in the regulation of spindle formation during mitosis. Interaction of ADD1 with MYO10 is dependent on phosphorylation, whereby phosphorylation of ADD1 enables its binding to MYO10 on mitotic spindles. Reduction in ADD1 protein in NEK1 mutant mice is associated with hyperphosphorylation of ADD1, thereby preventing the interaction with MYO10 during meiotic spindle formation. Our results reveal a novel regulatory role for NEK1 in the regulation of spindle architecture and function during meiosis.


Sign in / Sign up

Export Citation Format

Share Document