scholarly journals F-actin prevents interaction between sperm DNA and the oocyte meiotic spindle in C. elegans

2017 ◽  
Vol 216 (8) ◽  
pp. 2273-2282 ◽  
Author(s):  
Michelle T. Panzica ◽  
Harold C. Marin ◽  
Anne-Cecile Reymann ◽  
Francis J. McNally

Fertilization occurs during female meiosis in most animals, which raises the question of what prevents the sperm DNA from interacting with the meiotic spindle. In this study, we find that Caenorhabditis elegans sperm DNA stays in a fixed position at the opposite end of the embryo from the meiotic spindle while yolk granules are transported throughout the embryo by kinesin-1. In the absence of F-actin, the sperm DNA, centrioles, and organelles were transported as a unit with the yolk granules, resulting in sperm DNA within 2 µm of the meiotic spindle. F-actin imaging revealed a cytoplasmic meshwork that might restrict transport in a size-dependent manner. However, increasing yolk granule size did not slow their velocity, and the F-actin moved with the yolk granules. Instead, sperm contents connect to the cortical F-actin to prevent interaction with the meiotic spindle.

2020 ◽  
Author(s):  
Laura Bel Borja ◽  
Flavie Soubigou ◽  
Samuel J.P. Taylor ◽  
Conchita Fraguas Bringas ◽  
Jacqueline Budrewicz ◽  
...  

ABSTRACTProtein Phosphatase 2A (PP2A) is an heterotrimer composed of scaffolding (A), catalytic (C), and regulatory (B) subunits with various key roles during cell division. While A and C subunits form the core enzyme, the diversity generated by interchangeable B subunits dictates substrate specificity. Within the B subunits, B56-type subunits play important roles during meiosis in yeast and mice by protecting centromeric cohesion and stabilising the kinetochore-microtubule attachments. These functions are achieved through targeting of B56 subunits to centromere and kinetochore by Shugoshin and BUBR1. In the nematode Caenorhabditis elegans (C. elegans) the closest BUBR1 ortholog lacks the B56 interaction domain and the Shugoshin orthologue is not required for normal segregation during oocyte meiosis. Therefore, the role of PP2A in C. elegans female meiosis is not known. Here, we report that PP2A is essential for meiotic spindle assembly and chromosome dynamics during C. elegans female meiosis. Specifically, B56 subunits PPTR-1 and PPTR-2 associate with chromosomes during prometaphase I and regulate chromosome congression. The chromosome localization of B56 subunits does not require shugoshin orthologue SGO-1. Instead we have identified the kinase BUB-1 as the key B56 targeting factor to the chromosomes during meiosis. PP2A BUB-1 recruits PP2A:B56 to the chromosomes via dual mechanism: 1) PPTR-1/2 interacts with the newly identified LxxIxE short linear motif (SLiM) within a disordered region in BUB-1 in a phosphorylation-dependent manner; and 2) PPTR-2 can also be recruited to chromosomes in a BUB-1 kinase domain-dependent manner. Our results highlight a novel, BUB-1-dependent mechanism for B56 recruitment, essential for recruiting a pool of PP2A required for proper chromosome congression during meiosis I.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Laura Bel Borja ◽  
Flavie Soubigou ◽  
Samuel J P Taylor ◽  
Conchita Fraguas Bringas ◽  
Jacqueline Budrewicz ◽  
...  

Protein Phosphatase 2A (PP2A) is a heterotrimer composed of scaffolding (A), catalytic (C), and regulatory (B) subunits. PP2A complexes with B56 subunits are targeted by Shugoshin and BUBR1 to protect centromeric cohesion and stabilise kinetochore–microtubule attachments in yeast and mouse meiosis. In Caenorhabditis elegans, the closest BUBR1 orthologue lacks the B56-interaction domain and Shugoshin is not required for meiotic segregation. Therefore, the role of PP2A in C. elegans female meiosis is unknown. We report that PP2A is essential for meiotic spindle assembly and chromosome dynamics during C. elegans female meiosis. BUB-1 is the main chromosome-targeting factor for B56 subunits during prometaphase I. BUB-1 recruits PP2A:B56 to the chromosomes via a newly identified LxxIxE motif in a phosphorylation-dependent manner, and this recruitment is important for proper chromosome congression. Our results highlight a novel mechanism for B56 recruitment, essential for recruiting a pool of PP2A involved in chromosome congression during meiosis I.


2006 ◽  
Vol 175 (6) ◽  
pp. 881-891 ◽  
Author(s):  
Karen McNally ◽  
Anjon Audhya ◽  
Karen Oegema ◽  
Francis J. McNally

Accurate control of spindle length is a conserved feature of eukaryotic cell division. Lengthening of mitotic spindles contributes to chromosome segregation and cytokinesis during mitosis in animals and fungi. In contrast, spindle shortening may contribute to conservation of egg cytoplasm during female meiosis. Katanin is a microtubule-severing enzyme that is concentrated at mitotic and meiotic spindle poles in animals. We show that inhibition of katanin slows the rate of spindle shortening in nocodazole-treated mammalian fibroblasts and in untreated Caenorhabditis elegans meiotic embryos. Wild-type C. elegans meiotic spindle shortening proceeds through an early katanin-independent phase marked by increasing microtubule density and a second, katanin-dependent phase that occurs after microtubule density stops increasing. In addition, double-mutant analysis indicated that γ-tubulin–dependent nucleation and microtubule severing may provide redundant mechanisms for increasing microtubule number during the early stages of meiotic spindle assembly.


2020 ◽  
Vol 64 (2) ◽  
pp. 383-396
Author(s):  
Lara K. Krüger ◽  
Phong T. Tran

Abstract The mitotic spindle robustly scales with cell size in a plethora of different organisms. During development and throughout evolution, the spindle adjusts to cell size in metazoans and yeast in order to ensure faithful chromosome separation. Spindle adjustment to cell size occurs by the scaling of spindle length, spindle shape and the velocity of spindle assembly and elongation. Different mechanisms, depending on spindle structure and organism, account for these scaling relationships. The limited availability of critical spindle components, protein gradients, sequestration of spindle components, or post-translational modification and differential expression levels have been implicated in the regulation of spindle length and the spindle assembly/elongation velocity in a cell size-dependent manner. In this review, we will discuss the phenomenon and mechanisms of spindle length, spindle shape and spindle elongation velocity scaling with cell size.


2018 ◽  
Author(s):  
Stefanie Redemann ◽  
Ina Lantzsch ◽  
Norbert Lindow ◽  
Steffen Prohaska ◽  
Martin Srayko ◽  
...  

Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1631-1639
Author(s):  
Yo Suzuki ◽  
Gail A Morris ◽  
Min Han ◽  
William B Wood

Abstract The signaling pathway initiated by the TGF-β family member DBL-1 in Caenorhabditis elegans controls body shape in a dose-dependent manner. Loss-of-function (lf) mutations in the dbl-1 gene cause a short, small body (Sma phenotype), whereas overexpression of dbl-1 causes a long body (Lon phenotype). To understand the cellular mechanisms underlying these phenotypes, we have isolated suppressors of the Sma phenotype resulting from a dbl-1(lf) mutation. Two of these suppressors are mutations in the lon-3 gene, of which four additional alleles are known. We show that lon-3 encodes a collagen that is a component of the C. elegans cuticle. Genetic and reporter-gene expression analyses suggest that lon-3 is involved in determination of body shape and is post-transcriptionally regulated by the dbl-1 pathway. These results support the possibility that TGF-β signaling controls C. elegans body shape by regulating cuticle composition.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Abigail R. R. Guillermo ◽  
Karolina Chocian ◽  
Gavriil Gavriilidis ◽  
Julien Vandamme ◽  
Anna Elisabetta Salcini ◽  
...  

Abstract Background Evidence of global heterochromatin decay and aberrant gene expression in models of physiological and premature ageing have long supported the “heterochromatin loss theory of ageing”, which proposes that ageing is aetiologically linked to, and accompanied by, a progressive, generalised loss of repressive epigenetic signatures. However, the remarkable plasticity of chromatin conformation suggests that the re-establishment of such marks could potentially revert the transcriptomic architecture of animal cells to a “younger” state, promoting longevity and healthspan. To expand our understanding of the ageing process and its connection to chromatin biology, we screened an RNAi library of chromatin-associated factors for increased longevity phenotypes. Results We identified the lysine demethylases jmjd-3.2 and utx-1, as well as the lysine methyltransferase mes-2 as regulators of both lifespan and healthspan in C. elegans. Strikingly, we found that both overexpression and loss of function of jmjd-3.2 and utx-1 are all associated with enhanced longevity. Furthermore, we showed that the catalytic activity of UTX-1, but not JMJD-3.2, is critical for lifespan extension in the context of overexpression. In attempting to reconcile the improved longevity associated with both loss and gain of function of utx-1, we investigated the alternative lifespan pathways and tissue specificity of longevity outcomes. We demonstrated that lifespan extension caused by loss of utx-1 function is daf-16 dependent, while overexpression effects are partially independent of daf-16. In addition, lifespan extension was observed when utx-1 was knocked down or overexpressed in neurons and intestine, whereas in the epidermis, only knockdown of utx-1 conferred improved longevity. Conclusions We show that the regulation of longevity by chromatin modifiers can be the result of the interaction between distinct factors, such as the level and tissue of expression. Overall, we suggest that the heterochromatin loss model of ageing may be too simplistic an explanation of organismal ageing when molecular and tissue-specific effects are taken into account.


2005 ◽  
Vol 288 (2) ◽  
pp. C467-C474 ◽  
Author(s):  
S. Todd Lamitina ◽  
Kevin Strange

All cells adapt to hypertonic stress by regulating their volume after shrinkage, by accumulating organic osmolytes, and by activating mechanisms that protect against and repair hypertonicity-induced damage. In mammals and nematodes, inhibition of signaling from the DAF-2/IGF-1 insulin receptor activates the DAF-16/FOXO transcription factor, resulting in increased life span and resistance to some types of stress. We tested the hypothesis that inhibition of insulin signaling in Caenorhabditis elegans also increases hypertonic stress resistance. Genetic inhibition of DAF-2 or its downstream target, the AGE-1 phosphatidylinositol 3-kinase, confers striking resistance to a normally lethal hypertonic shock in a DAF-16-dependent manner. However, insulin signaling is not inhibited by or required for adaptation to hypertonic conditions. Microarray studies have identified 263 genes that are transcriptionally upregulated by DAF-16 activation. We identified 14 DAF-16-upregulated genes by RNA interference screening that are required for age- 1 hypertonic stress resistance. These genes encode heat shock proteins, proteins of unknown function, and trehalose synthesis enzymes. Trehalose levels were elevated approximately twofold in age- 1 mutants, but this increase was insufficient to prevent rapid hypertonic shrinkage. However, age- 1 animals unable to synthesize trehalose survive poorly under hypertonic conditions. We conclude that increased expression of proteins that protect eukaryotic cells against environmental stress and/or repair stress-induced molecular damage confers hypertonic stress resistance in C. elegans daf- 2/ age- 1 mutants. Elevated levels of solutes such as trehalose may also function in a cytoprotective manner. Our studies provide novel insights into stress resistance in animal cells and a foundation for new studies aimed at defining molecular mechanisms underlying these essential processes.


2021 ◽  
Author(s):  
Stephen M Blazie ◽  
Seika Takayanagi-Kiya ◽  
Katherine A McCulloch ◽  
Yishi Jin

AbstractThe translation initiation complex eIF3 imparts specialized functions to regulate protein expression. However, understanding of eIF3 activities in neurons remains limited despite widespread dysregulation of eIF3 subunits in neurological disorders. Here, we report a selective role of theC. elegansRNA-binding subunit EIF-3.G in shaping the neuronal protein landscape. We identify a missense mutation in the conserved Zinc-Finger (ZF) of EIF-3.G that acts in a gain-of-function manner to dampen neuronal hyperexcitation. Using neuron type-specific seCLIP, we systematically mapped EIF-3.G-mRNA interactions and identified EIF-3.G occupancy on GC-rich 5′UTRs of a select set of mRNAs enriched in activity-dependent functions. We demonstrate that the ZF mutation in EIF-3.G alters translation in a 5′UTR dependent manner. Our study reveals anin vivomechanism for eIF3 in governing neuronal protein levels to control activity states and offers insights into how eIF3 dysregulation contributes to neuronal disorders.


Sign in / Sign up

Export Citation Format

Share Document