scholarly journals Tunable phenotypic variability through an autoregulatory alternative sigma factor circuit

2020 ◽  
Author(s):  
Christian P. Schwall ◽  
Torkel Loman ◽  
Bruno M.C. Martins ◽  
Sandra Cortijo ◽  
Casandra Villava ◽  
...  

AbstractGenetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on environmental conditions. However, how bacterial populations modulate their level of phenotypic variability remains unclear. Here we show that the alternative sigma factor σV circuit in B. subtilis generates functional phenotypic variability that can be tuned by stress level, environmental history, and genetic perturbations. Using single-cell time-lapse microscopy and microfluidics, we find the fraction of cells that immediately activate σV under lysozyme stress depends on stress level and on a memory of previous stress. Iteration between model and experiment reveals that this tunability can be explained by the autoregulatory feedback structure of the sigV operon. As predicted by the model, genetic perturbations to the operon also modulate the response variability. The conserved sigma-anti-sigma autoregulation motif is thus a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment.

2018 ◽  
Author(s):  
Om Patange ◽  
Christian Schwall ◽  
Matt Jones ◽  
Douglas Griffith ◽  
Andrew Phillips ◽  
...  

Gene expression can be noisy1,2, as can the growth of single cells3,4. Such cell-to-cell variation has been implicated in survival strategies for bacterial populations5–7. However, it remains unclear how single cells couple gene expression with growth to implement these survival strategies. Here we show how noisy expression of a key stress response regulator, rpoS8, allows E. coli to modulate its growth dynamics to survive future adverse environments. First, we demonstrate that rpoS has a long-tailed distribution of expression in an unstressed population of cells. We next reveal how a dynamic positive feedback loop between rpoS and growth rate produces multi-generation rpoS pulses, which are responsible for the rpoS heterogeneity. We do so experimentally with single-cell, time-lapse microscopy9 and microfluidics10 and theoretically with a stochastic model11,22. Finally, we demonstrate the function of the coupling of heterogeneous rpoS activity and growth. It enables E. coli to survive oxidative attack by causing prolonged periods of slow growth. This dynamic phenotype is captured by the rpoS-growth feedback model. Our synthesis of noisy gene expression, growth, and survival paves the way for further exploration of functional phenotypic variability.


2021 ◽  
Vol 17 (7) ◽  
Author(s):  
Christian P Schwall ◽  
Torkel E Loman ◽  
Bruno M C Martins ◽  
Sandra Cortijo ◽  
Casandra Villava ◽  
...  

2020 ◽  
pp. 47-50
Author(s):  
N. V. Saraeva ◽  
N. V. Spiridonova ◽  
M. T. Tugushev ◽  
O. V. Shurygina ◽  
A. I. Sinitsyna

In order to increase the pregnancy rate in the assisted reproductive technology, the selection of one embryo with the highest implantation potential it is very important. Time-lapse microscopy (TLM) is a tool for selecting quality embryos for transfer. This study aimed to assess the benefits of single-embryo transfer of autologous oocytes performed on day 5 of embryo incubation in a TLM-equipped system in IVF and ICSI programs. Single-embryo transfer following incubation in a TLM-equipped incubator was performed in 282 patients, who formed the main group; the control group consisted of 461 patients undergoing single-embryo transfer following a traditional culture and embryo selection procedure. We assessed the quality of transferred embryos, the rates of clinical pregnancy and delivery. The groups did not differ in the ratio of IVF and ICSI cycles, average age, and infertility factor. The proportion of excellent quality embryos for transfer was 77.0% in the main group and 65.1% in the control group (p = 0.001). In the subgroup with receiving eight and less oocytes we noted the tendency of receiving more quality embryos in the main group (р = 0.052). In the subgroup of nine and more oocytes the quality of the transferred embryos did not differ between two groups. The clinical pregnancy rate was 60.2% in the main group and 52.9% in the control group (p = 0.057). The delivery rate was 45.0% in the main group and 39.9% in the control group (p > 0.050).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sneha L. Koneru ◽  
Fu Xiang Quah ◽  
Ritobrata Ghose ◽  
Mark Hintze ◽  
Nicola Gritti ◽  
...  

AbstractDevelopmental patterning in Caenorhabditis elegans is known to proceed in a highly stereotypical manner, which raises the question of how developmental robustness is achieved despite the inevitable stochastic noise. We focus here on a population of epidermal cells, the seam cells, which show stem cell-like behaviour and divide symmetrically and asymmetrically over post-embryonic development to generate epidermal and neuronal tissues. We have conducted a mutagenesis screen to identify mutants that introduce phenotypic variability in the normally invariant seam cell population. We report here that a null mutation in the fusogen eff-1 increases seam cell number variability. Using time-lapse microscopy and single molecule fluorescence hybridisation, we find that seam cell division and differentiation patterns are mostly unperturbed in eff-1 mutants, indicating that cell fusion is uncoupled from the cell differentiation programme. Nevertheless, seam cell losses due to the inappropriate differentiation of both daughter cells following division, as well as seam cell gains through symmetric divisions towards the seam cell fate were observed at low frequency. We show that these stochastic errors likely arise through accumulation of defects interrupting the continuity of the seam and changing seam cell shape, highlighting the role of tissue homeostasis in suppressing phenotypic variability during development.


Sign in / Sign up

Export Citation Format

Share Document