scholarly journals Mechanotransduction and dynamic outflow regulation in trabecular meshwork requires Piezo1 channels

Author(s):  
Oleg Yarishkin ◽  
Tam T. T. Phuong ◽  
Jackson M. Baumann ◽  
Michael L. De Ieso ◽  
Felix Vazquez-Chona ◽  
...  

AbstractMechanosensitivity of the trabecular meshwork (TM) is a key determinant of intraocular pressure (IOP) yet our understanding of the molecular mechanisms that subserve it remains in its infancy. Here, we show that mechanosensitive Piezo1 channels modulate the TM pressure response via calcium signaling and dynamics of the conventional outflow pathway. Pressure steps evoked fast, inactivating cation currents and calcium signals that were inhibited by Ruthenium Red, GsMTx4 and Piezo1 shRNA. Piezo1 expression was confirmed by transcript and protein analysis, and by visualizing Yoda1-mediated currents and [Ca2+]i elevations in primary human TM cells. Piezo1 activation was obligatory for transduction of physiological shear stress and was coupled to reorganization of F-actin cytoskeleton and focal adhesions. The importance of Piezo1 channels as pressure sensors was shown by the GsMTx4 -dependence of the pressure-evoked current and conventional outflow function. We also demonstrate that Piezo1 collaborates with the stretch-activated TRPV4 channel, which mediated slow, delayed currents to pressure steps. Collectively, these results suggest that TM mechanosensitivity utilizes kinetically, regulatory and functionally distinct pressure transducers to inform the cells about force-sensing contexts. Piezo1-dependent control of shear flow sensing, calcium homeostasis, cytoskeletal dynamics and pressure-dependent outflow suggests a novel potential therapeutic target for treating glaucoma.Significance StatementTrabecular meshwork (TM) is a highly mechanosensitive tissue in the eye that regulates intraocular pressure through the control of aqueous humor drainage. Its dysfunction underlies the progression of glaucoma but neither the mechanisms through which TM cells sense pressure nor their role in aqueous humor outflow are understood at the molecular level. We identified the Piezo1 channel as a key TM transducer of tensile stretch, shear flow and pressure. Its activation resulted in intracellular signals that altered organization of the cytoskeleton and cell-extracellular matrix contacts, and modulated the trabecular component of aqueous outflow whereas another channel, TRPV4, mediated a delayed mechanoresponse. These findings provide a new mechanistic framework for trabecular mechanotransduction and its role in the regulation of fast fluctuations in ocular pressure, as well as chronic remodeling of TM architecture that epitomizes glaucoma.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiyoung Lee ◽  
Jin A. Choi ◽  
Hyun-hee Ju ◽  
Ju-Eun Kim ◽  
Soon-Young Paik ◽  
...  

AbstractThe inflammatory chemokines, monocyte chemoattractant protein (MCP)-1 and IL-8, are produced by normal trabecular meshwork cells (TM) and elevated in the aqueous humor of primary open angle glaucoma (POAG) and hypertensive anterior uveitis associated with viral infection. However, their role in TM cells and aqueous humor outflow remains unclear. Here, we explored the possible involvement of MCP-1 and IL-8 in the physiology of TM cells in the context of aqueous outflow, and the viral anterior uveitis. We found that the stimulation of human TM cells with MCP-1 and IL-8 induced significant increase in the formation of actin stress fibers and focal adhesions, myosin light chain phosphorylation, and the contraction of TM cells. MCP-1 and IL-8 also demonstrated elevation of extracellular matrix proteins, and the migration of TM cells. When TM cells were infected with HSV-1 and CMV virus, there was a significant increase in cytoskeletal contraction and Rho-GTPase activation. Viral infection of TM cells revealed significantly increased expression of MCP-1 and IL-8. Taken together, these results indicate that MCP-1 and IL-8 induce TM cell contractibility, fibrogenic activity, and plasticity, which are presumed to increase resistance to aqueous outflow in viral anterior uveitis and POAG.


Medicina ◽  
2013 ◽  
Vol 49 (4) ◽  
pp. 26 ◽  
Author(s):  
Daiva Paulavičiūtė-Baikštienė ◽  
Rūta Baršauskaitė ◽  
Ingrida Janulevičienė

The aim of the article was to overview the pathophysiology of the conventional outflow pathway, trabecular meshwork, and intraocular pressure and to discuss the options of future glaucoma treatment directed to improvement in aqueous outflow. The literature search in the Medline, Embase, and Cochrane databases from April to May 2012 was performed; a total of 47 articles analyzed. The diminished conventional pathway may be altered by several pathophysiological mechanisms like TM obstruction caused by transforming growth factor-β2, clastic nondeformable cells, macrophages leaking from hypermature cataract, iris pigment, lens capsular fragments after YAG-laser posterior capsulotomy, proteins and their subfragments. It is known that trabecular meshwork contraction reduces outflow, and the actomyosin system is directly linked to this mechanism. New glaucoma drugs are still under investigation, but it is already proven that agents such as latranculin-B are effective in improving aqueous drainage. Selective Rho-associated coiled coilforming protein kinase inhibitors have been shown to cause a significant improvement in outflow facility and may become a new option for glaucoma treatment. Caldesmon negatively regulates actin-myosin interactions and thus increases outflow. Stem cells may replace missing or nonfunctional trabecular meshwork cells and hopefully will bring a new treatment solution. Pathophysiological mechanisms regulating conventional aqueous humor outflow are still not fully understood and require further investigations. Future treatment decisions should be directed to a specific mechanism regulating an elevation in intraocular pressure.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 174 ◽  
Author(s):  
Yalong Dang ◽  
Susannah Waxman ◽  
Chao Wang ◽  
Priyal Shah ◽  
Ralitsa T. Loewen ◽  
...  

Background: Outflow regulation and phagocytosis are key functions of the trabecular meshwork (TM), but it is not clear how the two are related in secondary open angle glaucomas characterized by an increased particle load. We hypothesized that diminished TM phagocytosis is not the primary cause of early ocular hypertension and recreated pigment dispersion in a porcine ex vivo model. Methods: Sixteen porcine anterior chamber cultures received a continuous infusion of pigment granules (Pg), while 16 additional anterior chambers served as controls (C). Pressure transducers recorded the intraocular pressure (IOP). The phagocytic capacity of the trabecular meshwork was determined by fluorescent microspheres. Results: The baseline IOPs in Pg and C were similar (P=0.82). A significant IOP elevation occurred in Pg at 48, 120, and 180 hours (all P<0.01, compared to baseline). The pigment did not cause a reduction in TM phagocytosis at 48 hours, when the earliest IOP elevation occurred, but at 120 hours onward (P=0.001 compared to C). This reduction did not result in an additional IOP increase at 120 or 180 hours compared to the first IOP elevation at 48 hours (P>0.05). Conclusions: In this porcine model of pigmentary glaucoma, an IOP elevation occurs much earlier than when phagocytosis fails, suggesting that two separate mechanisms might be at work.


SciVee ◽  
2012 ◽  
Author(s):  
Xinbo Li ◽  
Diala Abu-Hassan ◽  
Janice Vranka ◽  
John Bradley ◽  
Ted Acott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document