Biomechanical Properties of the Trabecular Meshwork in Aqueous Humor Outflow Resistance

Author(s):  
VijayKrishna Raghunathan
SciVee ◽  
2012 ◽  
Author(s):  
Xinbo Li ◽  
Diala Abu-Hassan ◽  
Janice Vranka ◽  
John Bradley ◽  
Ted Acott ◽  
...  

2008 ◽  
Vol 295 (5) ◽  
pp. C1057-C1070 ◽  
Author(s):  
Min Zhang ◽  
Rupalatha Maddala ◽  
Ponugoti Vasantha Rao

Impaired drainage of aqueous humor through the trabecular meshwork (TM) culminating in increased intraocular pressure is a major risk factor for glaucoma, a leading cause of blindness worldwide. Regulation of aqueous humor drainage through the TM, however, is poorly understood. The role of RhoA GTPase-mediated actomyosin organization, cell adhesive interactions, and gene expression in regulation of aqueous humor outflow was investigated using adenoviral vector-driven expression of constitutively active mutant of RhoA (RhoAV14). Organ-cultured anterior segments from porcine eyes expressing RhoAV14 exhibited significant reduction of aqueous humor outflow. Cultured TM cells expressing RhoAV14 exhibited a pronounced contractile morphology, increased actin stress fibers, and focal adhesions and increased levels of phosphorylated myosin light chain (MLC), collagen IV, fibronectin, and laminin. cDNA microarray analysis of RNA extracted from RhoAV14-expressing human TM cells revealed a significant increase in the expression of genes encoding extracellular matrix (ECM) proteins, cytokines, integrins, cytoskeletal proteins, and signaling proteins. Conversely, various ECM proteins stimulated robust increases in phosphorylation of MLC, paxillin, and focal adhesion kinase and activated Rho GTPase and actin stress fiber formation in TM cells, indicating a potential regulatory feedback interaction between ECM-induced mechanical strain and Rho GTPase-induced isometric tension in TM cells. Collectively, these data demonstrate that sustained activation of Rho GTPase signaling in the aqueous humor outflow pathway increases resistance to aqueous humor outflow through the trabecular pathway by influencing the actomyosin assembly, cell adhesive interactions, and the expression of ECM proteins and cytokines in TM cells.


2006 ◽  
Vol 39 ◽  
pp. S387
Author(s):  
D.R. Overby ◽  
S.R. Hofmann ◽  
S.A. Kasper ◽  
Z. Lu ◽  
H. Gong

2011 ◽  
Vol 227 (1) ◽  
pp. 172-182 ◽  
Author(s):  
Ang Li ◽  
Chi Ting Leung ◽  
Kim Peterson-Yantorno ◽  
W. Daniel Stamer ◽  
Claire H. Mitchell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document