scholarly journals Mendelian imputation of parental genotypes for genome-wide estimation of direct and indirect genetic effects

Author(s):  
Alexander I. Young ◽  
Seyed Moeen Nehzati ◽  
Chanwook Lee ◽  
Stefania Benonisdottir ◽  
David Cesarini ◽  
...  

AbstractAssociations between genotype and phenotype derive from four sources: direct genetic effects, indirect genetic effects from relatives, population stratification, and correlations with other variants affecting the phenotype through assortative mating. Genome-wide association studies (GWAS) of unrelated individuals have limited ability to distinguish the different sources of genotype-phenotype association, confusing interpretation of results and potentially leading to bias when those results are applied – in genetic prediction of traits, for example. With genetic data on families, the randomisation of genetic material during meiosis can be used to distinguish direct genetic effects from other sources of genotype-phenotype association. Genetic data on siblings is the most common form of genetic data on close relatives. We develop a method that takes advantage of identity-by-descent sharing between siblings to impute missing parental genotypes. Compared to no imputation, this increases the effective sample size for estimation of direct genetic effects and indirect parental effects by up to one third and one half respectively. We develop a related method for imputing missing parental genotypes when a parent-offspring pair is observed. We provide the imputation methods in a software package, SNIPar (single nucleotide imputation of parents), that also estimates genome-wide direct and indirect effects of SNPs. We apply this to a sample of 45,826 White British individuals in the UK Biobank who have at least one genotyped first degree relative. We estimate direct and indirect genetic effects for ∼5 million genome-wide SNPs for five traits. We estimate the correlation between direct genetic effects and effects estimated by standard GWAS to be 0.61 (S.E. 0.09) for years of education, 0.68 (S.E. 0.10) for neuroticism, 0.72 (S.E. 0.09) for smoking initiation, 0.87 (S.E. 0.04) for BMI, and 0.96 (S.E. 0.01) for height. These results suggest that GWAS based on unrelated individuals provides an inaccurate picture of direct genetic effects for certain human traits.

2021 ◽  
Vol 118 (25) ◽  
pp. e2023184118
Author(s):  
Yuchang Wu ◽  
Xiaoyuan Zhong ◽  
Yunong Lin ◽  
Zijie Zhao ◽  
Jiawen Chen ◽  
...  

Marginal effect estimates in genome-wide association studies (GWAS) are mixtures of direct and indirect genetic effects. Existing methods to dissect these effects require family-based, individual-level genetic, and phenotypic data with large samples, which is difficult to obtain in practice. Here, we propose a statistical framework to estimate direct and indirect genetic effects using summary statistics from GWAS conducted on own and offspring phenotypes. Applied to birth weight, our method showed nearly identical results with those obtained using individual-level data. We also decomposed direct and indirect genetic effects of educational attainment (EA), which showed distinct patterns of genetic correlations with 45 complex traits. The known genetic correlations between EA and higher height, lower body mass index, less-active smoking behavior, and better health outcomes were mostly explained by the indirect genetic component of EA. In contrast, the consistently identified genetic correlation of autism spectrum disorder (ASD) with higher EA resides in the direct genetic component. A polygenic transmission disequilibrium test showed a significant overtransmission of the direct component of EA from healthy parents to ASD probands. Taken together, we demonstrate that traditional GWAS approaches, in conjunction with offspring phenotypic data collection in existing cohorts, could greatly benefit studies on genetic nurture and shed important light on the interpretation of genetic associations for human complex traits.


2020 ◽  
Vol 31 (5-6) ◽  
pp. 146-156 ◽  
Author(s):  
A. Tomar ◽  
R. Teperino

Abstract Thought to be directly and uniquely dependent from genotypes, the ontogeny of individual phenotypes is much more complicated. Individual genetics, environmental exposures, and their interaction are the three main determinants of individual’s phenotype. This picture has been further complicated a decade ago when the Lamarckian theory of acquired inheritance has been rekindled with the discovery of epigenetic inheritance, according to which acquired phenotypes can be transmitted through fertilization and affect phenotypes across generations. The results of Genome-Wide Association Studies have also highlighted a big degree of missing heritability in genetics and have provided hints that not only acquired phenotypes, but also individual’s genotypes affect phenotypes intergenerationally through indirect genetic effects. Here, we review available examples of indirect genetic effects in mammals, what is known of the underlying molecular mechanisms and their potential impact for our understanding of missing heritability, phenotypic variation. and individual disease risk.


Author(s):  
Yuchang Wu ◽  
Xiaoyuan Zhong ◽  
Yunong Lin ◽  
Zijie Zhao ◽  
Jiawen Chen ◽  
...  

AbstractMarginal effect estimates in genome-wide association studies (GWAS) are mixtures of direct and indirect genetic effects. Existing methods to dissect these effects require family-based, individual-level genetic and phenotypic data with large samples, which is difficult to obtain in practice. Here, we propose a novel statistical framework to estimate direct and indirect genetic effects using summary statistics from GWAS conducted on own and offspring phenotypes. Applied to birth weight, our method showed nearly identical results with those obtained using individual-level data. We also decomposed direct and indirect genetic effects of educational attainment (EA), which showed distinct patterns of genetic correlations with 45 complex traits. The known genetic correlations between EA and higher height, lower BMI, less active smoking behavior, and better health outcomes were mostly explained by the indirect genetic component of EA. In contrast, the consistently identified genetic correlation of autism spectrum disorder (ASD) with higher EA resides in the direct genetic component. Polygenic transmission disequilibrium test showed a significant over-transmission of the direct component of EA from healthy parents to ASD probands. Taken together, we demonstrate that traditional GWAS approaches, in conjunction with offspring phenotypic data collection in existing cohorts, could greatly benefit studies on genetic nurture and shed important light on the interpretation of genetic associations for human complex traits.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicole M. Warrington ◽  
Liang-Dar Hwang ◽  
Michel G. Nivard ◽  
David M. Evans

AbstractEstimation of direct and indirect (i.e. parental and/or sibling) genetic effects on phenotypes is becoming increasingly important. We compare several multivariate methods that utilize summary results statistics from genome-wide association studies to determine how well they estimate direct and indirect genetic effects. Using data from the UK Biobank, we contrast point estimates and standard errors at individual loci compared to those obtained using individual level data. We show that Genomic structural equation modelling (SEM) outperforms the other methods in accurately estimating conditional genetic effects and their standard errors. We apply Genomic SEM to fertility data in the UK Biobank and partition the genetic effect into female and male fertility and a sibling specific effect. We identify a novel locus for fertility and genetic correlations between fertility and educational attainment, risk taking behaviour, autism and subjective well-being. We recommend Genomic SEM be used to partition genetic effects into direct and indirect components when using summary results from genome-wide association studies.


2018 ◽  
Vol 49 (13) ◽  
pp. 2197-2205 ◽  
Author(s):  
Hannah M. Sallis ◽  
George Davey Smith ◽  
Marcus R. Munafò

AbstractBackgroundDespite the well-documented association between smoking and personality traits such as neuroticism and extraversion, little is known about the potential causal nature of these findings. If it were possible to unpick the association between personality and smoking, it may be possible to develop tailored smoking interventions that could lead to both improved uptake and efficacy.MethodsRecent genome-wide association studies (GWAS) have identified variants robustly associated with both smoking phenotypes and personality traits. Here we use publicly available GWAS summary statistics in addition to individual-level data from UK Biobank to investigate the link between smoking and personality. We first estimate genetic overlap between traits using LD score regression and then use bidirectional Mendelian randomisation methods to unpick the nature of this relationship.ResultsWe found clear evidence of a modest genetic correlation between smoking behaviours and both neuroticism and extraversion. We found some evidence that personality traits are causally linked to certain smoking phenotypes: among current smokers each additional neuroticism risk allele was associated with smoking an additional 0.07 cigarettes per day (95% CI 0.02–0.12, p = 0.009), and each additional extraversion effect allele was associated with an elevated odds of smoking initiation (OR 1.015, 95% CI 1.01–1.02, p = 9.6 × 10−7).ConclusionWe found some evidence for specific causal pathways from personality to smoking phenotypes, and weaker evidence of an association from smoking initiation to personality. These findings could be used to inform future smoking interventions or to tailor existing schemes.


Author(s):  
M. Shamila ◽  
Amit Kumar Tyagi

Genome-wide association studies (GWAS) or genetic data analysis is used to discover common genetic factors which influence the health of human beings and become a part of a disease. The concept of using genomics has increased in recent years, especially in e-healthcare. Today there is huge improvement required in this field or genomics. Note that the terms genomics and genetics are not similar terms here. Basically, the human genome is made up of DNA, which consists of four different chemical building blocks (called bases and abbreviated A, T, C, and G). Based on this, we differentiate each and every human being living on earth. The term ‘genetics' originated from the Greek word ‘genetikos'. It means ‘origin'. In simple terms, genetics can be defined as a branch of biology, which deals with the study of the functionalities and composition of a single gene in an organism. There are mainly three branches of genetics, which include classical genetics, molecular genetics, and population genetics.


2017 ◽  
Author(s):  
Clare Bycroft ◽  
Colin Freeman ◽  
Desislava Petkova ◽  
Gavin Band ◽  
Lloyd T. Elliott ◽  
...  

AbstractThe UK Biobank project is a large prospective cohort study of ~500,000 individuals from across the United Kingdom, aged between 40-69 at recruitment. A rich variety of phenotypic and health-related information is available on each participant, making the resource unprecedented in its size and scope. Here we describe the genome-wide genotype data (~805,000 markers) collected on all individuals in the cohort and its quality control procedures. Genotype data on this scale offers novel opportunities for assessing quality issues, although the wide range of ancestries of the individuals in the cohort also creates particular challenges. We also conducted a set of analyses that reveal properties of the genetic data – such as population structure and relatedness – that can be important for downstream analyses. In addition, we phased and imputed genotypes into the dataset, using computationally efficient methods combined with the Haplotype Reference Consortium (HRC) and UK10K haplotype resource. This increases the number of testable variants by over 100-fold to ~96 million variants. We also imputed classical allelic variation at 11 human leukocyte antigen (HLA) genes, and as a quality control check of this imputation, we replicate signals of known associations between HLA alleles and many common diseases. We describe tools that allow efficient genome-wide association studies (GWAS) of multiple traits and fast phenome-wide association studies (PheWAS), which work together with a new compressed file format that has been used to distribute the dataset. As a further check of the genotyped and imputed datasets, we performed a test-case genome-wide association scan on a well-studied human trait, standing height.


2021 ◽  
Author(s):  
Guy Hindley ◽  
Kevin S O'Connell ◽  
Zillur Rahman ◽  
Oleksandr Frei ◽  
Shahram Bahrami ◽  
...  

Mood instability (MOOD) is a transdiagnostic phenomenon with a prominent neurobiological basis. Recent genome-wide association studies found significant positive genetic correlation between MOOD and major depression (DEP) and weak correlations with other psychiatric disorders. We investigated the polygenic overlap between MOOD and psychiatric disorders beyond genetic correlation to better characterize putative shared genetic determinants. Summary statistics for schizophrenia (SCZ, n=105,318), bipolar disorder (BIP, n=413,466), DEP (n=450,619), attention-deficit hyperactivity disorder (ADHD, n=53,293) and MOOD (n=363,705), were analysed using the bivariate causal mixture model and conjunctional false discovery rate methods to estimate the proportion of shared variants influencing MOOD and each disorder, and identify jointly associated genomic loci. MOOD correlated positively with all psychiatric disorders, but with wide variation in strength (rg=0.10-0.62). Of 10.4K genomic variants influencing MOOD, 4K-9.4K were estimated to influence psychiatric disorders. MOOD was jointly associated with DEP at 163 loci, SCZ at 110, BIP at 60 and ADHD at 25, with consistent genetic effects in independent samples. Fifty-three jointly associated loci were overlapping across two or more disorders (transdiagnostic), seven of which had discordant effect directions on psychiatric disorders. Genes mapped to loci associated with MOOD and all four disorders were enriched in a single gene-set, synapse organization. The extensive polygenic overlap indicates shared molecular underpinnings across MOOD and psychiatric disorders. However, distinct patterns of genetic correlation and effect directions of shared loci suggest divergent effects on corresponding neurobiological mechanisms which may relate to differences in the core clinical features of each disorder.


2020 ◽  
Author(s):  
Ruth E Mitchell ◽  
Kirsty Bates ◽  
Robyn E Wootton ◽  
Adil Harroud ◽  
J. Brent Richards ◽  
...  

AbstractThe causes of multiple sclerosis (MS) remain unknown. Smoking has been associated with MS in observational studies and is often thought of as an environmental risk factor. We used two-sample Mendelian Randomization (MR) to examined whether this association is causal using genetic variants identified in genome-wide association studies (GWAS) as associated with smoking. We assessed both smoking initiation and lifetime smoking behaviour (which captures smoking duration, heaviness and cessation). There was very limited evidence for a meaningful effect of smoking on MS susceptibility was measured using summary statistics from the International Multiple Sclerosis Genetics Consortium (IMSGC) meta-analysis, including 14,802 cases and 26,703 controls. There was no clear evidence for an effect of smoking on the risk of developing MS (smoking initiation: odds ratio [OR] 1.03, 95% confidence interval [CI] 0.92-1.61; lifetime smoking: OR 1.10, 95% CI 0.87-1.40). These findings suggest that smoking does not have a detrimental consequence on MS susceptibility. Further work is needed to determine the causal effect of smoking on MS progression.


Circulation ◽  
2012 ◽  
Vol 125 (suppl_10) ◽  
Author(s):  
Nora Franceschini ◽  
Ching-Ti Liu ◽  
W Linda Kao ◽  
Leslie Lange ◽  
Kari E North ◽  
...  

Smoking is a known risk factor for progression of chronic kidney disease (CKD) but little is known of the role of smoking exposure on genetic effects of variants influencing kidney traits in the general population. We examined the evidence for effect modification of current smoking on the association of single nucleotide polymorphisms (SNP) with estimated glomerular filtration rate (eGFR) and urine albumin to creatinine ratio (UACR), two well established markers of kidney disease, in 23,767 white and 8,110 African American individuals from five studies genotyped using the custom SNP array ITMAT-Broad-CARe (IBC array) in the CARe consortium. We obtained study- and race-specific residuals from linear regression models of natural log-transformed eGFR or UACR regressed on age, sex and study site. We then stratified residuals by current smoking exposure and performed genome wide association analyses using additive genetic models adjusted for 10 principal components, and accounting for family structure using mixed models, if needed. Meta-analyses across smoking-specific strata within each self-reported race were performed using the inverse variance weighted fixed effect models. We assessed smoking interaction using a heterogeneity test (P<0.10) and I 2 metric. Among SNPs reaching the array wide specific significance threshold (2.0x10 -6 ) for association with eGFR or UACR, there was significant between smoking-strata heterogeneity for rs7422339 ( CPS1 , P=0.03, I 2 =77.7%) and rs13333226 ( UMOD , P=0.06, I 2 =71.1%) for eGFR in whites, with larger decreases in eGFR among current smokers compared to past/never smokers. For UACR, rs1801239 (missense variant of CUBN , between smoking-strata heterogeneity P=0.09, I 2 =64.8%) T allele showed less protective effect among current smokers than non-smokers in whites only. These loci have been previously identified in genome wide association studies. Our findings, if replicated, suggest possible important interactions of smoking exposure on the genetic effects of known loci associated with kidney traits. Funding(This research has received full or partial funding support from the American Heart Association, National Center)


Sign in / Sign up

Export Citation Format

Share Document