scholarly journals Imaging LexA degradation in cells explains regulatory mechanisms and heterogeneity of the SOS response

Author(s):  
Emma C. Jones ◽  
Stephan Uphoff

ABSTRACTThe SOS response functions as the central regulator of DNA repair and mutagenesis in most bacteria and stands as a paradigm of gene networks controlled by a master transcriptional regulator, LexA. We developed a single-molecule imaging approach to directly monitor the LexA repressor inside live Escherichia coli cells, demonstrating key mechanisms by which DNA-binding and degradation of LexA regulates the SOS response in vivo. Our approach revealed that self-cleavage of LexA occurs frequently during unperturbed growth and causes substantial heterogeneity in LexA abundances across cells. LexA variability underlies SOS gene expression heterogeneity and triggers spontaneous SOS pulses, which enhance bacterial survival in anticipation of stress.

2020 ◽  
Author(s):  
Leonard Schärfen ◽  
Miloš Tišma ◽  
Andreas Hartmann ◽  
Michael Schlierf

AbstractIn bacteria, the key mechanism governing mutation, adaptation and survival upon DNA damage is the SOS response. Through autoproteolytic digestion triggered by single-stranded DNA caused by most antibiotics, the transcriptional repressor LexA controls over 50 SOS genes including DNA repair pathways and drivers of mutagenesis. Efforts to inhibit this response and thereby combat antibiotic resistance rely on a broad understanding of its behavior in vivo, which is still limited. Here, we develop a single-molecule localization microscopy assay to directly visualize LexA mobility in Escherichia coli and monitor the SOS response on the level of transcription factor activity. We identify four diffusive populations and monitor their temporal evolution upon ciprofloxacin-induced continuous DNA damage. With LexA mutants, we assign target bound, non-specifically DNA bound, freely diffusing and cleaved repressors. We develop a strategy to count LexA in fixed cells at different time points after antibiotic stress and combine the time-evolution of LexA sub-populations and the repressor’s overall abundance. Through fitting a detailed kinetic model we obtain in vivo synthesis, cleavage and binding rates and determined that the regulatory feedback system reaches a new equilibrium in ∼100 min. LexA concentrations showed non-constant heterogeneity during SOS response and designate LexA expression, and thereby regulation of downstream SOS proteins, as drivers of evolutionary adaptation. Even under low antibiotic stress, we observed a strong SOS response on the LexA level, suggestion that small amounts of antibiotics can trigger adaptation in E. coli.


2018 ◽  
Author(s):  
Madushani Dharmarwardana ◽  
André F. Martins ◽  
Zhuo Chen ◽  
Philip M. Palacios ◽  
Chance M. Nowak ◽  
...  

Superoxide overproduction is known to occur in multiple disease states requiring critical care yet non-invasive detection of superoxide in deep tissue remains a challenge. Herein, we report a metal-free magnetic resonance imaging (MRI) and electron paramagnetic resonance (EPR) active contrast agent prepared by “click conjugating” paramagnetic organic radical contrast agents (ORCAs) to the surface of tobacco mosaic virus (TMV). While ORCAs are known to be reduced <i>in vivo</i> to an MRI/EPR silent state, their oxidation is facilitated specifically by reactive oxygen species—in particular superoxide—and are largely unaffected by peroxides and molecular oxygen. Unfortunately, single molecule ORCAs typically offer weak MRI contrast. In contrast, our data confirm that the macromolecular ORCA-TMV conjugates show marked enhancement for <i>T<sub>1</sub></i> contrast at low field (<3.0 T), and <i>T<sub>2</sub></i> contrast at high field (9.4 T). Additionally, we demonstrated that the unique topology of TMV allows for “quenchless fluorescent” bimodal probe for concurrent fluorescence and MRI/EPR imaging, which was made possible by exploiting the unique inner and outer surface of the TMV nanoparticle. <a>Finally, we show TMV-ORCAs do not respond to normal cellular respiration, minimizing the likelihood for background, yet still respond to enzymatically produced superoxide in complicated biological fluids like serum.</a>


2019 ◽  
Author(s):  
Hamilton Lee ◽  
Jenica Lumata ◽  
Michael A. Luzuriaga ◽  
Candace Benjamin ◽  
Olivia Brohlin ◽  
...  

<div><div><div><p>Many contrast agents for magnetic resonance imaging are based on gadolinium, however side effects limit their use in some patients. Organic radical contrast agents (ORCAs) are potential alternatives, but are reduced rapidly in physiological conditions and have low relaxivities as single molecule contrast agents. Herein, we use a supramolecular strategy where cucurbit[8]uril binds with nanomolar affinities to ORCAs and protects them against biological reductants to create a stable radical in vivo. We further over came the weak contrast by conjugating this complex on the surface of a self-assembled biomacromolecule derived from the tobacco mosaic virus.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document