scholarly journals Central Nervous System Manifestations in COVID-19 Patients: A Systematic Review and Meta-analysis

Author(s):  
Shahrzad Nazari ◽  
Amirhossein Azari Jafari ◽  
Seyyedmohammadsadeq Mirmoeeni ◽  
Saeid Sadeghian ◽  
Mohammad Eghbal Heidari ◽  
...  

Background: At the end of December 2019, a novel respiratory infection, initially reported in China, known as COVID-19 initially reported in China, and later known as COVID-19, led to a global pandemic. Despite many studies reporting respiratory infections as the primary manifestations of this illness, an increasing number of investigations have focused on the central nervous system (CNS) manifestations in COVID-19. In this study, we aimed to evaluate the CNS presentations in COVID-19 patients in an attempt to identify the common CNS features and provide a better overview to tackle this new pandemic. Methods: In this systematic review and meta-analysis, we searched PubMed, Web of Science, Ovid, Embase, Scopus, and Google Scholar. Included studies were publications that reported the CNS features between January 1st, 2020, to April 20th, 2020. The data of selected studies were screened and extracted independently by four reviewers. Extracted data analyzed by using STATA statistical software. The study protocol registered with PROSPERO (CRD42020184456). Results: Of 2353 retrieved studies, we selected 64 studies with 11282 patients after screening. Most of the studies were conducted in China (58 studies). The most common CNS symptom of COVID-19 were Headache (8.69%, 95%CI: 6.76%-10.82%), Dizziness (5.94%, 95%CI: 3.66%-8.22%), and Impaired consciousness (1.9%, 95%CI: 1%-2.79%). Conclusions: The growing number of studies have reported COVID-19, CNS presentations as remarkable manifestations that happen. Hence, understanding the CNS characteristics of COVID-19 can help us for better diagnosis and ultimately prevention of worse outcomes.

Author(s):  
Ezzatollah Keyhani

Acetylcholinesterase (EC 3.1.1.7) (ACHE) has been localized at cholinergic junctions both in the central nervous system and at the periphery and it functions in neurotransmission. ACHE was also found in other tissues without involvement in neurotransmission, but exhibiting the common property of transporting water and ions. This communication describes intracellular ACHE in mammalian bone marrow and its secretion into the extracellular medium.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2065
Author(s):  
Irene Cortés-Pérez ◽  
Noelia Zagalaz-Anula ◽  
Desirée Montoro-Cárdenas ◽  
Rafael Lomas-Vega ◽  
Esteban Obrero-Gaitán ◽  
...  

Leap Motion Controller (LMC) is a virtual reality device that can be used in the rehabilitation of central nervous system disease (CNSD) motor impairments. This review aimed to evaluate the effect of video game-based therapy with LMC on the recovery of upper extremity (UE) motor function in patients with CNSD. A systematic review with meta-analysis was performed in PubMed Medline, Web of Science, Scopus, CINAHL, and PEDro. We included five randomized controlled trials (RCTs) of patients with CNSD in which LMC was used as experimental therapy compared to conventional therapy (CT) to restore UE motor function. Pooled effects were estimated with Cohen’s standardized mean difference (SMD) and its 95% confidence interval (95% CI). At first, in patients with stroke, LMC showed low-quality evidence of a large effect on UE mobility (SMD = 0.96; 95% CI = 0.47, 1.45). In combination with CT, LMC showed very low-quality evidence of a large effect on UE mobility (SMD = 1.34; 95% CI = 0.49, 2.19) and the UE mobility-oriented task (SMD = 1.26; 95% CI = 0.42, 2.10). Second, in patients with non-acute CNSD (cerebral palsy, multiple sclerosis, and Parkinson’s disease), LMC showed low-quality evidence of a medium effect on grip strength (GS) (SMD = 0.47; 95% CI = 0.03, 0.90) and on gross motor dexterity (GMD) (SMD = 0.73; 95% CI = 0.28, 1.17) in the most affected UE. In combination with CT, LMC showed very low-quality evidence of a high effect in the most affected UE on GMD (SMD = 0.80; 95% CI = 0.06, 1.15) and fine motor dexterity (FMD) (SMD = 0.82; 95% CI = 0.07, 1.57). In stroke, LMC improved UE mobility and UE mobility-oriented tasks, and in non-acute CNSD, LMC improved the GS and GMD of the most affected UE and FMD when it was used with CT.


2021 ◽  
Vol 9 (7) ◽  
pp. 1450
Author(s):  
Yoann Maitre ◽  
Rachid Mahalli ◽  
Pierre Micheneau ◽  
Alexis Delpierre ◽  
Marie Guerin ◽  
...  

This systematic review aims to identify probiotics and prebiotics for modulating oral bacterial species associated with mental disorders. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guideline, we search the electronic MEDLINE database published till January 2021 to identify the studies on probiotics and/or prebiotics for preventing and treating major oral dysbiosis that provokes mental disorders. The outcome of the search produces 374 records. After excluding non-relevant studies, 38 papers were included in the present review. While many studies suggest the potential effects of the oral microbiota on the biochemical signalling events between the oral microbiota and central nervous system, our review highlights the limited development concerning the use of prebiotics and/or probiotics in modulating oral dysbiosis potentially involved in the development of mental disorders. However, the collected studies confirm prebiotics and/or probiotics interest for a global or targeted modulation of the oral microbiome in preventing or treating mental disorders. These outcomes also offer exciting prospects for improving the oral health of people with mental disorders in the future.


2021 ◽  
Author(s):  
Shahrzad Nazari ◽  
Amirhossein Azari Jafari ◽  
Seyyedmohammadsadeq Mirmoeeni ◽  
Saeid Sadeghian ◽  
Mohammad Eghbal Heidari ◽  
...  

1973 ◽  
Vol 71 (1-2) ◽  
pp. 1-8 ◽  
Author(s):  
Sylvio Celso Goncalves da Costa ◽  
Samuel B. Pessoa ◽  
Neize de Moura Pereira ◽  
Tania Colombo

The main object of the present paper is to furnish a brief account to the knowledgement of Protozoa parasitic in common Brazilian frog of the genus Leptodactylus for general students in Zoology and for investigators that use this frog as a laboratory animal. Hepatozoon leptodactyli (Haemogregarina leptodactyli) was found in two species of frogs - Leptodactylus ocellatus and L. pentadactylus - in which develop schizogony whereas sporogony occurs in the leech Haementeria lutzi as was obtainded in experimental conditions. Intracellular forms have been found in peripheral circulation, chiefly in erythrocytes, but we have found them in leukocytes too. Tissue stages were found in frog, liver, lungs, spleen, gut, brain and heart. The occurence of hemogregarine in the Central Nervous System was recorded by Costa & al,(13) and Ball (2). Some cytochemical methods were employed in attempt to differentiate gametocytes from trophozoites in the peripheral blood and to characterize the cystic membrane as well. The speorogonic cycle was developed in only one specie of leech. A brief description of the parasite is given.


Development ◽  
1994 ◽  
Vol 120 (5) ◽  
pp. 1151-1161 ◽  
Author(s):  
Y. Zhang ◽  
A. Ungar ◽  
C. Fresquez ◽  
R. Holmgren

Previous studies have shown that the segment polarity locus gooseberry, which contains two closely related transcripts gooseberry-proximal and gooseberry-distal, is required for proper development in both the epidermis and the central nervous system of Drosophila. In this study, the roles of the gooseberry proteins in the process of cell fate specification have been examined by generating two fly lines in which either gooseberry-distal or gooseberry-proximal expression is under the control of an hsp70 promoter. We have found that ectopic expression of either gooseberry protein causes cell fate transformations that are reciprocal to those of a gooseberry deletion mutant. Our results suggest that the gooseberry-distal protein is required for the specification of naked cuticle in the epidermis and specific neuroblasts in the central nervous system. These roles may reflect independent functions in neuroblasts and epidermal cells or a single function in the common ectodermal precursor cells. The gooseberry-proximal protein is also found in the same neuroblasts as gooseberry-distal and in the descendants of these cells.


Sign in / Sign up

Export Citation Format

Share Document