scholarly journals Delta/Theta band EEG activity shapes the rhythmic perceptual sampling of auditory scenes

2020 ◽  
Author(s):  
Cora Kubetschek ◽  
Christoph Kayser

AbstractMany studies speak in favor of a rhythmic mode of listening, by which the encoding of acoustic information is structured by rhythmic neural processes at the time scale of about 1 to 4 Hz. Indeed, psychophysical data suggest that humans sample acoustic information in extended soundscapes not uniformly, but weigh the evidence at different moments for their perceptual decision at the time scale of about 2 Hz. We here test the critical prediction that such rhythmic perceptual sampling is directly related to the state of ongoing brain activity prior to the stimulus. Human participants judged the direction of frequency sweeps in 1.2 s long soundscapes while their EEG was recorded. Computing the perceptual weights attributed to different epochs within these soundscapes contingent on the phase or power of pre-stimulus oscillatory EEG activity revealed a direct link between the 4Hz EEG phase and power prior to the stimulus and the phase of the rhythmic component of these perceptual weights. Hence, the temporal pattern by which the acoustic information is sampled over time for behavior is directly related to pre-stimulus brain activity in the delta/theta band. These results close a gap in the mechanistic picture linking ongoing delta band activity with their role in shaping the segmentation and perceptual influence of subsequent acoustic information.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cora Kubetschek ◽  
Christoph Kayser

AbstractMany studies speak in favor of a rhythmic mode of listening, by which the encoding of acoustic information is structured by rhythmic neural processes at the time scale of about 1 to 4 Hz. Indeed, psychophysical data suggest that humans sample acoustic information in extended soundscapes not uniformly, but weigh the evidence at different moments for their perceptual decision at the time scale of about 2 Hz. We here test the critical prediction that such rhythmic perceptual sampling is directly related to the state of ongoing brain activity prior to the stimulus. Human participants judged the direction of frequency sweeps in 1.2 s long soundscapes while their EEG was recorded. We computed the perceptual weights attributed to different epochs within these soundscapes contingent on the phase or power of pre-stimulus EEG activity. This revealed a direct link between 4 Hz EEG phase and power prior to the stimulus and the phase of the rhythmic component of these perceptual weights. Hence, the temporal pattern by which the acoustic information is sampled over time for behavior is directly related to pre-stimulus brain activity in the delta/theta band. These results close a gap in the mechanistic picture linking ongoing delta band activity with their role in shaping the segmentation and perceptual influence of subsequent acoustic information.


2019 ◽  
Author(s):  
Christoph Kayser

AbstractConverging results suggest that perception is controlled by rhythmic processes in the brain. In the auditory domain, neuroimaging studies show that the perception of brief sounds is shaped by rhythmic activity prior to the stimulus and electrophysiological recordings have linked delta band (1-2 Hz) activity to the functioning of individual neurons. These results have promoted theories of rhythmic modes of listening and generally suggest that the perceptually relevant encoding of acoustic information is structured by rhythmic processes along auditory pathways. A prediction from this perspective – which so far has not been tested – is that such rhythmic processes also shape how acoustic information is combined over time to judge extended soundscapes. The present study was designed to directly test this prediction. Human participants judged the overall change in perceived frequency content in temporally extended (1.2 to 1.8 s) soundscapes, while the perceptual use of the available sensory evidence was quantified using psychophysical reverse correlation. Model-based analysis of individual participant’s perceptual weights revealed a rich temporal structure, including linear trends, a U-shaped profile tied to the overall stimulus duration, and importantly, rhythmic components at the time scale of 1 to 2Hz. The collective evidence found here across four versions of the experiment supports the notion that rhythmic processes operating on the delta band time scale structure how perception samples temporally extended acoustic scenes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257378
Author(s):  
Fernanda Dantas Bueno ◽  
André Mascioli Cravo

Studies investigating the neural mechanisms of time perception often measure brain activity while participants perform a temporal task. However, several of these studies are based exclusively on tasks in which time is relevant, making it hard to dissociate activity related to decisions about time from other task-related patterns. In the present study, human participants performed a temporal or color discrimination task of visual stimuli. Participants were informed which magnitude they would have to judge before or after presenting the two stimuli (S1 and S2) in different blocks. Our behavioral results showed, as expected, that performance was better when participants knew beforehand which magnitude they would judge. Electrophysiological data (EEG) was analysed using Linear Discriminant Contrasts (LDC) and a Representational Similarity Analysis (RSA) approach to investigate whether and when information about time and color was encoded. During the presentation of S1, we did not find consistent differences in EEG activity as a function of the task. On the other hand, during S2, we found that temporal and color information was encoded in a task-relevant manner. Taken together, our results suggest that task goals strongly modulate decision-related information in EEG activity.


2020 ◽  
Author(s):  
Fernanda D. Bueno ◽  
André M. Cravo

AbstractStudies investigating the neural mechanisms of time perception often measure brain activity while participants perform a temporal task. However, several of these studies are based exclusively on tasks in which time is relevant, making it hard to dissociate activity related to decisions about time from other task-related patterns. In the present study, human participants performed a temporal or color discrimination task of visual stimuli. In different blocks, participants were informed which magnitude they would have to judge before or after presenting the two stimuli (S1 and S2). Our behavioral results showed, as expected, that performance was better when participants knew beforehand which magnitude they would judge. Electrophysiological data (EEG) was analyzed using Linear Discriminant Contrasts (LDC) and a Representational Similarity Analysis (RSA) approach to investigate whether and when information about time and color was encoded. During the presentation of S1, we did not find consistent differences in EEG activity as a function of the task. On the other hand, during S2, we found that temporal and color information was encoded in a task-relevant manner. Taken together, our results suggest that task goals strongly modulate decision-related information in EEG activity.


2021 ◽  
Vol 11 (3) ◽  
pp. 330
Author(s):  
Dalton J. Edwards ◽  
Logan T. Trujillo

Traditionally, quantitative electroencephalography (QEEG) studies collect data within controlled laboratory environments that limit the external validity of scientific conclusions. To probe these validity limits, we used a mobile EEG system to record electrophysiological signals from human participants while they were located within a controlled laboratory environment and an uncontrolled outdoor environment exhibiting several moderate background influences. Participants performed two tasks during these recordings, one engaging brain activity related to several complex cognitive functions (number sense, attention, memory, executive function) and the other engaging two default brain states. We computed EEG spectral power over three frequency bands (theta: 4–7 Hz, alpha: 8–13 Hz, low beta: 14–20 Hz) where EEG oscillatory activity is known to correlate with the neurocognitive states engaged by these tasks. Null hypothesis significance testing yielded significant EEG power effects typical of the neurocognitive states engaged by each task, but only a beta-band power difference between the two background recording environments during the default brain state. Bayesian analysis showed that the remaining environment null effects were unlikely to reflect measurement insensitivities. This overall pattern of results supports the external validity of laboratory EEG power findings for complex and default neurocognitive states engaged within moderately uncontrolled environments.


2018 ◽  
Vol 30 (12) ◽  
pp. 1883-1901 ◽  
Author(s):  
Nicolò F. Bernardi ◽  
Floris T. Van Vugt ◽  
Ricardo Ruy Valle-Mena ◽  
Shahabeddin Vahdat ◽  
David J. Ostry

The relationship between neural activation during movement training and the plastic changes that survive beyond movement execution is not well understood. Here we ask whether the changes in resting-state functional connectivity observed following motor learning overlap with the brain networks that track movement error during training. Human participants learned to trace an arched trajectory using a computer mouse in an MRI scanner. Motor performance was quantified on each trial as the maximum distance from the prescribed arc. During learning, two brain networks were observed, one showing increased activations for larger movement error, comprising the cerebellum, parietal, visual, somatosensory, and cortical motor areas, and the other being more activated for movements with lower error, comprising the ventral putamen and the OFC. After learning, changes in brain connectivity at rest were found predominantly in areas that had shown increased activation for larger error during task, specifically the cerebellum and its connections with motor, visual, and somatosensory cortex. The findings indicate that, although both errors and accurate movements are important during the active stage of motor learning, the changes in brain activity observed at rest primarily reflect networks that process errors. This suggests that error-related networks are represented in the initial stages of motor memory formation.


Author(s):  
Ehsan T. Esfahani ◽  
Shrey Pareek ◽  
Pramod Chembrammel ◽  
Mostafa Ghobadi ◽  
Thenkurussi Kesavadas

Recognition of user’s mental engagement is imperative to the success of robotic rehabilitation. The paper explores the novel paradigm in robotic rehabilitation of using Passive BCI as opposed to the conventional Active ones. We have designed experiments to determine a user’s level of mental engagement. In our experimental study, we record the brain activity of 3 healthy subjects during multiple sessions where subjects need to navigate through a maze using a haptic system with variable resistance/assistance. Using the data obtained through the experiments we highlight the drawbacks of using conventional workload metrics as indicators of human engagement, thus asserting that Motor and Cognitive Workloads be differentiated. Additionally we propose a new set of features: differential PSD of Cz-Poz at alpha, Beta and Sigma band, (Mental engagement) and relative C3-C4 at beta (Motor Workload) to distinguish Normal Cases from those instances when haptic where applied with an accuracy of 92.93%. Mental engagement is calculated using the power spectral density of the Theta band (4–7 Hz) in the parietal-midline (Pz) with respect to the central midline (Cz). The above information can be used to adjust robotic rehabilitation parameters I accordance with the user’s needs. The adjustment may be in the force levels, difficulty level of the task or increasing the speed of the task.


2021 ◽  
Vol 13 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Jean-Philippe Antonietti ◽  
Pamela Banta Lavenex ◽  
...  

During normal aging resting-state brain activity changes and working memory performance declines as compared to young adulthood. Interestingly, previous studies reported that different electroencephalographic (EEG) measures of resting-state brain activity may correlate with working memory performance at different ages. Here, we recorded resting-state EEG activity and tested allocentric spatial working memory in healthy young (20–30 years) and older (65–75 years) adults. We adapted standard EEG methods to record brain activity in mobile participants in a non-shielded environment, in both eyes closed and eyes open conditions. Our study revealed some age-group differences in resting-state brain activity that were consistent with previous results obtained in different recording conditions. We confirmed that age-group differences in resting-state EEG activity depend on the recording conditions and the specific parameters considered. Nevertheless, lower theta-band and alpha-band frequencies and absolute powers, and higher beta-band and gamma-band relative powers were overall observed in healthy older adults, as compared to healthy young adults. In addition, using principal component and regression analyses, we found that the first extracted EEG component, which represented mainly theta, alpha and beta powers, correlated with spatial working memory performance in older adults, but not in young adults. These findings are consistent with the theory that the neurobiological bases of working memory performance may differ between young and older adults. However, individual measures of resting-state EEG activity could not be used as reliable biomarkers to predict individual allocentric spatial working memory performance in young or older adults.


2021 ◽  
Author(s):  
Milou J.L. van Helvert ◽  
Leonie Oostwoud Wijdenes ◽  
Linda Geerligs ◽  
W. Pieter Medendorp

AbstractWhile beta-band activity during motor planning is known to be modulated by uncertainty about where to act, less is known about its modulations to uncertainty about how to act. To investigate this issue, we recorded oscillatory brain activity with EEG while human participants (n = 17) performed a hand choice reaching task. The reaching hand was either predetermined or of participants’ choice, and the target was close to one of the two hands or at about equal distance from both. To measure neural activity in a motion-artifact-free time window, the location of the upcoming target was cued 1000-1500 ms before the presentation of the target, whereby the cue was valid in 50% of trials. As evidence for motor planning during the cueing phase, behavioral observations showed that the cue affected later hand choice. Furthermore, reaction times were longer in the choice than in the predetermined trials, supporting the notion of a competitive process for hand selection. Modulations of beta-band power over central cortical regions, but not alpha-band or theta-band power, were in line with these observations. During the cueing period, reaches in predetermined trials were preceded by larger decreases in beta-band power than reaches in choice trials. Cue direction did not affect reaction times or beta-band power, which may be due to the cue being invalid in 50% of trials, retaining effector uncertainty during motor planning. Our findings suggest that effector uncertainty, similar to target uncertainty, selectively modulates beta-band power during motor planning.New & NoteworthyWhile reach-related beta-band power in central cortical areas is known to modulate with the number of potential targets, here we show, using a cueing paradigm, that the power in this frequency band, but not in the alpha or theta-band, is also modulated by the uncertainty of which hand to use. This finding supports the notion that multiple possible effector-specific actions can be specified in parallel up to the level of motor preparation.


Sign in / Sign up

Export Citation Format

Share Document