scholarly journals Loss of Kinesin-8 improves the robustness of the acentrosomal spindle

2020 ◽  
Author(s):  
Alberto Pineda-Santaella ◽  
Nazaret Fernández-Castillo ◽  
Ángela Sánchez-Gómez ◽  
Alfonso Fernández-Álvarez

Chromosome segregation in female meiosis is inherently error-prone, among other reasons, because the acentrosomal spindle assembles and segregates chromosomes without the major microtubule-organizing centres in eukaryotes, the centrosomes, which causes high rate of aneuploidy. The molecular basis underlying formation of acentrosomal spindles is not as well-understood as that of centrosomal spindles and, consequently, strategies to improve spindle robustness are difficult to address. Recently, we noticed during fission yeast meiosis the formation of unexpected microtubules arrays, independent of the spindle pole bodies (yeast centrosome equivalent), with ability to segregate chromosomes. Here, we establish such microtubules formation as bonafide self-assembled spindles that depend on the canonical microtubule crosslinker Ase1/PRC1, share similar structural polarity and harbour the microtubule polymerase Alp14/XMAP215, while being independent of conventional γ-tubulin-mediated nucleation mechanisms. Remarkably, acentrosomal spindle robustness was reinforced by deletion of the Klp6/Kinesin-8, which, consequently, led to a reduced meiotic aneuploidy rate. Our results enlighten the molecular basis of acentrosomal meiosis, a crucial event in understanding gametogenesis.

2018 ◽  
Vol 29 (15) ◽  
pp. 1798-1810
Author(s):  
Meenakshi Agarwal ◽  
Hui Jin ◽  
Melainia McClain ◽  
Jinbo Fan ◽  
Bailey A. Koch ◽  
...  

The budding yeast centrosome, often called the spindle pole body (SPB), nucleates microtubules for chromosome segregation during cell division. An appendage, called the half bridge, attaches to one side of the SPB and regulates SPB duplication and separation. Like DNA, the SPB is duplicated only once per cell cycle. During meiosis, however, after one round of DNA replication, two rounds of SPB duplication and separation are coupled with homologue segregation in meiosis I and sister-chromatid segregation in meiosis II. How SPB duplication and separation are regulated during meiosis remains to be elucidated, and whether regulation in meiosis differs from that in mitosis is unclear. Here we show that overproduction of the half-bridge component Kar1 leads to premature SPB separation during meiosis. Furthermore, excessive Kar1 induces SPB overduplication to form supernumerary SPBs, leading to chromosome missegregation and erroneous ascospore formation. Kar1-­mediated SPB duplication bypasses the requirement of dephosphorylation of Sfi1, another half-bridge component previously identified as a licensing factor. Our results therefore reveal an unexpected role of Kar1 in licensing meiotic SPB duplication and suggest a unique mechanism of SPB regulation during budding yeast meiosis.


2019 ◽  
Author(s):  
Neha Varshney ◽  
Kaustuv Sanyal

Candida albicans, an ascomycete, has an ability to switch to diverse morphological forms. While C. albicans is predominatly diploid, it can tolerate aneuploidy as a survival strategy under stress. Aurora kinase B homolog Ipl1 is a critical ploidy regulator that controls microtubule dynamics and chromosome segregation in Saccharomyces cerevisiae. In this study, we show that Ipl1 in C. albicans has a longer activation loop than that of the well-studied ascomycete S. cerevisiae. Ipl1 localizes to the kinetochores during the G1/S phase and associates with the spindle during mitosis. Ipl1 regulates cell morphogenesis and is required for cell viability. Ipl1 monitors microtubule dynamics which is mediated by separation of spindle pole bodies. While Ipl1 is dispensable for maintaining structural integrity and clustering of kinetochores in C. albicans, it is required for the maintenance of kinetochore geometry to form bilobed structures along the mitotic spindle, a feature of Ipl1 that was not observed in other yeasts. Depletion of Ipl1 results in erroneous kinetochore-microtubule attachments leading to aneuploidy-associated resistance to fluconazole, the most common anti-fungal drug used to treat Candida infections. Taking together, we suggest that Ipl1 spatiotemporally ensures kinetochore geometry to facilitate bipolar spindle assembly crucial for ploidy maintenance in C. albicans.


2003 ◽  
Vol 14 (11) ◽  
pp. 4734-4743 ◽  
Author(s):  
Hong Hwa Lim ◽  
Foong May Yeong ◽  
Uttam Surana

Chromosome segregation, mitotic exit, and cytokinesis are executed in this order during mitosis. Although a scheme coordinating sister chromatid separation and initiation of mitotic exit has been proposed, the mechanism that temporally links the onset of cytokinesis to mitotic exit is not known. Exit from mitosis is regulated by the mitotic exit network (MEN), which includes a GTPase (Tem1) and various kinases (Cdc15, Cdc5, Dbf2, and Dbf20). Here, we show that Dbf2 and Dbf20 functions are necessary for the execution of cytokinesis. Relocalization of these proteins from spindle pole bodies to mother daughter neck seems to be necessary for this role because cdc15-2 mutant cells, though capable of exiting mitosis at semipermissive temperature, are unable to localize Dbf2 (and Dbf20) to the “neck” and fail to undergo cytokinesis. These cells can assemble and constrict the actomyosin ring normally but are incapable of forming a septum, suggesting that MEN components are critical for the initiation of septum formation. Interestingly, the spindle pole body to neck translocation of Dbf2 and Dbf20 is triggered by the inactivation of mitotic kinase. The requirement of kinase inactivation for translocation of MEN components to the division site thus provides a mechanism that renders mitotic exit a prerequisite for cytokinesis.


2015 ◽  
Vol 209 (2) ◽  
pp. 247-259 ◽  
Author(s):  
Ping Li ◽  
Yize Shao ◽  
Hui Jin ◽  
Hong-Guo Yu

Yeast centrosomes (called spindle pole bodies [SPBs]) remain cohesive for hours during meiotic G2 when recombination takes place. In contrast, SPBs separate within minutes after duplication in vegetative cells. We report here that Ndj1, a previously known meiosis-specific telomere-associated protein, is required for protecting SPB cohesion. Ndj1 localizes to the SPB but dissociates from it ∼16 min before SPB separation. Without Ndj1, meiotic SPBs lost cohesion prematurely, whereas overproduction of Ndj1 delayed SPB separation. When produced ectopically in vegetative cells, Ndj1 caused SPB separation defects and cell lethality. Localization of Ndj1 to the SPB depended on the SUN domain protein Mps3, and removal of the N terminus of Mps3 allowed SPB separation and suppressed the lethality of NDJ1-expressing vegetative cells. Finally, we show that Ndj1 forms oligomeric complexes with Mps3, and that the Polo-like kinase Cdc5 regulates Ndj1 protein stability and SPB separation. These findings reveal the underlying mechanism that coordinates yeast centrosome dynamics with meiotic telomere movement and cell cycle progression.


2006 ◽  
Vol 17 (3) ◽  
pp. 1421-1435 ◽  
Author(s):  
Kazuhide Asakawa ◽  
Kazunori Kume ◽  
Muneyoshi Kanai ◽  
Tetsuya Goshima ◽  
Kohji Miyahara ◽  
...  

We have identified a novel temperature-sensitive mutant of fission yeast α-tubulin Atb2 (atb2-983) that contains a single amino acid substitution (V260I). Atb2-983 is incorporated into the microtubules, and their overall structures are not altered noticeably, but microtubule dynamics is compromised during interphase. atb2-983 displays a high rate of chromosome missegregation and is synthetically lethal with deletions in a subset of spindle checkpoint genes including bub1, bub3, and mph1, but not with mad1, mad2, and mad3. During early mitosis in this mutant, Bub1, but not Mad2, remains for a prolonged period in the kinetochores that are situated in proximity to one of the two SPBs (spindle pole bodies). High dosage mal3+, encoding EB1 homologue, rescues atb2-983, suggesting that Mal3 function is compromised. Consistently, Mal3 localization and binding between Mal3 and Atb2-983 are impaired significantly, and a mal3 single mutant, such as atb2-983, displays prolonged Bub1 kinetochore localization. Furthermore in atb2-983 back-and-forth centromere oscillation during prometaphase is abolished. Intriguingly, this oscillation still occurs in the mal3 mutant, indicating that there is another defect independent of Mal3. These results show that microtubule dynamics is important for coordinated execution of mitotic events, in which Mal3 plays a vital role.


2005 ◽  
Vol 170 (2) ◽  
pp. 213-223 ◽  
Author(s):  
Edgar Trelles-Sticken ◽  
Caroline Adelfalk ◽  
Josef Loidl ◽  
Harry Scherthan

In diploid organisms, meiosis reduces the chromosome number by half during the formation of haploid gametes. During meiotic prophase, telomeres transiently cluster at a limited sector of the nuclear envelope (bouquet stage) near the spindle pole body (SPB). Cohesin is a multisubunit complex that contributes to chromosome segregation in meiosis I and II divisions. In yeast meiosis, deficiency for Rec8 cohesin subunit induces telomere clustering to persist, whereas telomere cluster–SPB colocalization is defective. These defects are rescued by expressing the mitotic cohesin Scc1 in rec8Δ meiosis, whereas bouquet-stage exit is independent of Cdc5 pololike kinase. An analysis of living Saccharomyces cerevisiae meiocytes revealed highly mobile telomeres from leptotene up to pachytene, with telomeres experiencing an actin- but not microtubule-dependent constraint of mobility during the bouquet stage. Our results suggest that cohesin is required for exit from actin polymerization–dependent telomere clustering and for linking the SPB to the telomere cluster in synaptic meiosis.


Author(s):  
Cenna Doornbos ◽  
Ronald Roepman

AbstractCorrect timing of cellular processes is essential during embryological development and to maintain the balance between healthy proliferation and tumour formation. Assembly and disassembly of the primary cilium, the cell’s sensory signalling organelle, are linked to cell cycle timing in the same manner as spindle pole assembly and chromosome segregation. Mitotic processes, ciliary assembly, and ciliary disassembly depend on the centrioles as microtubule-organizing centres (MTOC) to regulate polymerizing and depolymerizing microtubules. Subsequently, other functional protein modules are gathered to potentiate specific protein–protein interactions. In this review, we show that a significant subset of key mitotic regulator proteins is moonlighting at the cilium, among which PLK1, AURKA, CDC20, and their regulators. Although ciliary assembly defects are linked to a variety of ciliopathies, ciliary disassembly defects are more often linked to brain development and tumour formation. Acquiring a better understanding of the overlap in regulators of ciliary disassembly and mitosis is essential in finding therapeutic targets for the different diseases and types of tumours associated with these regulators.


2021 ◽  
Author(s):  
Md Hashim Reza ◽  
Jigyasa Verma ◽  
Ratul Chowdhury ◽  
Ravi Manjithaya ◽  
Kaustuv Sanyal

Asymmetric spindle pole body (SPB) inheritance requires a cascade of events that involve kinases, phosphatases and structural scaffold proteins including molecular motors and microtubule-associated proteins present in the nucleus and/or the cytoplasm. Higher levels of an SPB component Spc72 and the spindle positioning factor Kar9 at the old SPB, which migrates to the daughter cell, ensure asymmetric SPB inheritance. Timely SPB duplication followed by its asymmetric inheritance is a key to correct spindle alignment leading to high-fidelity chromosome segregation. By combining in silico analysis of known protein-protein interactions of autophagy (Atg)-related proteins with those that constitute the chromosome segregation machinery, and growth dynamics of 35 atg mutants in the presence of a microtubule poison, we identified Atg11 as a potential regulator of chromosome transmission. Cells lacking Atg11 did not show any kinetochore defects but displayed a high rate of chromosome loss and delayed anaphase onset. Atg11 positively interacted with Kar9 and Kip2 and negatively with Dyn1 and Kar3 in mediating proper chromosome segregation suggesting a role of Atg11 in spindle positioning. Indeed, atg11∆ cells displayed an inverted SPB inheritance. We further show that Atg11 promotes asymmetric localization of Spc72 and Kar9 on the old SPB. Atg11 physically interacted with Spc72 and transiently localized close to the old SPB during metaphase-to-anaphase progression. Taken together, our study uncovers an autophagy-independent role of Atg11 in spindle alignment and emphasizes the importance of unbiased screens to identify factors mediating the complex and intricate crosstalk between processes fundamental to genomic integrity.


2021 ◽  
Author(s):  
Alberto Pineda-Santaella ◽  
Nazaret Fernández-Castillo ◽  
Alberto Jiménez-Martín ◽  
María del Carmen Macías-Cabeza ◽  
Ángela Sánchez-Gómez ◽  
...  

Chromosome segregation in female meiosis in many metazoans is mediated by acentrosomal spindles, the existence of which implies that microtubule spindles self-assemble without the participation of the centrosomes. Although it is thought that acentrosomal meiosis is not conserved in fungi, we recently reported the formation of self-assembled microtubule arrays, which were able to segregate chromosomes, in fission yeast mutants where the contribution of the spindle pole body (SPB, the centrosome equivalent in yeast) was specifically blocked during meiosis. Here, we demonstrate that this unexpected microtubule formation represents a bonafide type of acentrosomal spindle. Moreover, a comparative analysis of these self-assembled spindles and the canonical SPB-dependent spindle reveals similarities and differences: for example, both spindles have a similar polarity, but the location of the γ-tubulin complex differs. We also show that the robustness of self-assembled spindles can be reinforced by eliminating kinesin-8 family members, whereas kinesin-8 mutants have an adverse impact on SPB-dependent spindles. Hence, we consider that reinforced self-assembled spindles in yeast will help to clarify the molecular mechanisms behind acentrosomal meiosis, a crucial step towards better understanding gametogenesis.


Sign in / Sign up

Export Citation Format

Share Document