scholarly journals Moonlighting of mitotic regulators in cilium disassembly

Author(s):  
Cenna Doornbos ◽  
Ronald Roepman

AbstractCorrect timing of cellular processes is essential during embryological development and to maintain the balance between healthy proliferation and tumour formation. Assembly and disassembly of the primary cilium, the cell’s sensory signalling organelle, are linked to cell cycle timing in the same manner as spindle pole assembly and chromosome segregation. Mitotic processes, ciliary assembly, and ciliary disassembly depend on the centrioles as microtubule-organizing centres (MTOC) to regulate polymerizing and depolymerizing microtubules. Subsequently, other functional protein modules are gathered to potentiate specific protein–protein interactions. In this review, we show that a significant subset of key mitotic regulator proteins is moonlighting at the cilium, among which PLK1, AURKA, CDC20, and their regulators. Although ciliary assembly defects are linked to a variety of ciliopathies, ciliary disassembly defects are more often linked to brain development and tumour formation. Acquiring a better understanding of the overlap in regulators of ciliary disassembly and mitosis is essential in finding therapeutic targets for the different diseases and types of tumours associated with these regulators.

2018 ◽  
Vol 25 (1) ◽  
pp. 5-21 ◽  
Author(s):  
Ylenia Cau ◽  
Daniela Valensin ◽  
Mattia Mori ◽  
Sara Draghi ◽  
Maurizio Botta

14-3-3 is a class of proteins able to interact with a multitude of targets by establishing protein-protein interactions (PPIs). They are usually found in all eukaryotes with a conserved secondary structure and high sequence homology among species. 14-3-3 proteins are involved in many physiological and pathological cellular processes either by triggering or interfering with the activity of specific protein partners. In the last years, the scientific community has collected many evidences on the role played by seven human 14-3-3 isoforms in cancer or neurodegenerative diseases. Indeed, these proteins regulate the molecular mechanisms associated to these diseases by interacting with (i) oncogenic and (ii) pro-apoptotic proteins and (iii) with proteins involved in Parkinson and Alzheimer diseases. The discovery of small molecule modulators of 14-3-3 PPIs could facilitate complete understanding of the physiological role of these proteins, and might offer valuable therapeutic approaches for these critical pathological states.


2018 ◽  
Author(s):  
Anne-Florence Bitbol

AbstractSpecific protein-protein interactions are crucial in most cellular processes. They enable multiprotein complexes to assemble and to remain stable, and they allow signal transduction in various pathways. Functional interactions between proteins result in coevolution between the interacting partners, and thus in correlations between their sequences. Pairwise maximum-entropy based models have enabled successful inference of pairs of amino-acid residues that are in contact in the three-dimensional structure of multi-protein complexes, starting from the correlations in the sequence data of known interaction partners. Recently, algorithms inspired by these methods have been developed to identify which proteins are specific interaction partners among the paralogous proteins of two families, starting from sequence data alone. Here, we demonstrate that a slightly higher performance for partner identification can be reached by an approximate maximization of the mutual information between the sequence alignments of the two protein families. This stands in contrast with structure prediction of proteins and of multiprotein complexes from sequence data, where pairwise maximum-entropy based global statistical models substantially improve performance compared to mutual information. Our findings entail that the statistical dependences allowing interaction partner prediction from sequence data are not restricted to the residue pairs that are in direct contact at the interface between the partner proteins.Author summarySpecific protein-protein interactions are at the heart of most intra-cellular processes. Mapping these interactions is thus crucial to a systems-level understanding of cells, and has broad applications to areas such as drug targeting. Systematic experimental identification of protein interaction partners is still challenging. However, a large and rapidly growing amount of sequence data is now available. Recently, algorithms have been proposed to identify which proteins interact from their sequences alone, thanks to the co-variation of the sequences of interacting proteins. These algorithms build upon inference methods that have been used with success to predict the three-dimensional structures of proteins and multi-protein complexes, and their focus is on the amino-acid residues that are in direct contact. Here, we propose a simpler method to identify which proteins interact among the paralogous proteins of two families, starting from their sequences alone. Our method relies on an approximate maximization of mutual information between the sequences of the two families, without specifically emphasizing the contacting residue pairs. We demonstrate that this method slightly outperforms the earlier one. This result highlights that partner prediction does not only rely on the identities and interactions of directly contacting amino-acids.


2014 ◽  
pp. S155-S164 ◽  
Author(s):  
V. OBSILOVA ◽  
M. KOPECKA ◽  
D. KOSEK ◽  
M. KACIROVA ◽  
S. KYLAROVA ◽  
...  

Many aspects of protein function regulation require specific protein-protein interactions to carry out the exact biochemical and cellular functions. The highly conserved members of the 14-3-3 protein family mediate such interactions and through binding to hundreds of other proteins provide multitude of regulatory functions, thus playing key roles in many cellular processes. The 14-3-3 protein binding can affect the function of the target protein in many ways including the modulation of its enzyme activity, its subcellular localization, its structure and stability, or its molecular interactions. In this minireview, we focus on mechanisms of the 14-3-3 protein-dependent regulation of three important 14-3-3 binding partners: yeast neutral trehalase Nth1, regulator of G-protein signaling 3 (RGS3), and phosducin.


2021 ◽  
Author(s):  
Zhong-Qiu Yu ◽  
Xiao-Man Liu ◽  
Dan Zhao ◽  
Dan-Dan Xu ◽  
Li-Lin Du

Protein-protein interactions are vital for executing nearly all cellular processes. To facilitate the detection of protein-protein interactions in living cells of the fission yeast Schizosaccharomyces pombe, here we present an efficient and convenient method termed the Pil1 co-tethering assay. In its basic form, we tether a bait protein to mCherry-tagged Pil1, which forms cortical filamentary structures, and examine whether a GFP-tagged prey protein colocalizes with the bait. We demonstrate that this assay is capable of detecting pairwise protein-protein interactions of cytosolic proteins and nuclear proteins. Furthermore, we show that this assay can be used for detecting not only binary protein-protein interactions, but also ternary and quaternary protein-protein interactions. Using this assay, we systematically characterized the protein-protein interactions in the Atg1 complex and in the phosphatidylinositol 3-kinase (PtdIns3K) complexes and found that Atg38 is incorporated into the PtdIns3K complex I via an Atg38-Vps34 interaction. Our data show that this assay is a useful and versatile tool and should be added to the routine toolbox of fission yeast researchers.


2018 ◽  
Vol 14 ◽  
pp. 2881-2896 ◽  
Author(s):  
Laura Carro

Antibiotics are potent pharmacological weapons against bacterial infections; however, the growing antibiotic resistance of microorganisms is compromising the efficacy of the currently available pharmacotherapies. Even though antimicrobial resistance is not a new problem, antibiotic development has failed to match the growth of resistant pathogens and hence, it is highly critical to discover new anti-infective drugs with novel mechanisms of action which will help reducing the burden of multidrug-resistant microorganisms. Protein–protein interactions (PPIs) are involved in a myriad of vital cellular processes and have become an attractive target to treat diseases. Therefore, targeting PPI networks in bacteria may offer a new and unconventional point of intervention to develop novel anti-infective drugs which can combat the ever-increasing rate of multidrug-resistant bacteria. This review describes the progress achieved towards the discovery of molecules that disrupt PPI systems in bacteria for which inhibitors have been identified and whose targets could represent an alternative lead discovery strategy to obtain new anti-infective molecules.


2018 ◽  
Vol 46 (6) ◽  
pp. 1593-1603 ◽  
Author(s):  
Chenkang Zheng ◽  
Patricia C. Dos Santos

Iron–sulfur (Fe–S) clusters are ubiquitous cofactors present in all domains of life. The chemistries catalyzed by these inorganic cofactors are diverse and their associated enzymes are involved in many cellular processes. Despite the wide range of structures reported for Fe–S clusters inserted into proteins, the biological synthesis of all Fe–S clusters starts with the assembly of simple units of 2Fe–2S and 4Fe–4S clusters. Several systems have been associated with the formation of Fe–S clusters in bacteria with varying phylogenetic origins and number of biosynthetic and regulatory components. All systems, however, construct Fe–S clusters through a similar biosynthetic scheme involving three main steps: (1) sulfur activation by a cysteine desulfurase, (2) cluster assembly by a scaffold protein, and (3) guided delivery of Fe–S units to either final acceptors or biosynthetic enzymes involved in the formation of complex metalloclusters. Another unifying feature on the biological formation of Fe–S clusters in bacteria is that these systems are tightly regulated by a network of protein interactions. Thus, the formation of transient protein complexes among biosynthetic components allows for the direct transfer of reactive sulfur and Fe–S intermediates preventing oxygen damage and reactions with non-physiological targets. Recent studies revealed the importance of reciprocal signature sequence motifs that enable specific protein–protein interactions and consequently guide the transactions between physiological donors and acceptors. Such findings provide insights into strategies used by bacteria to regulate the flow of reactive intermediates and provide protein barcodes to uncover yet-unidentified cellular components involved in Fe–S metabolism.


2017 ◽  
Author(s):  
Noemi Di Nanni ◽  
Matteo Gnocchi ◽  
Marco Moscatelli ◽  
Luciano Milanesi ◽  
Ettore Mosca

Network Diffusion has been proposed in several applications, thanks to its ability of amplifying biological signals and prioritizing genes that may be associated with a disease. Not surprising, the success of Network Diffusion on a “single layer” led to the first approaches for the joint analysis of multi-omics data. Here, we review integrative methods based on Network Diffusion that have been proposed with several aims (e.g. patient stratification, module detection, function prediction). We used Network Diffusion to analyse, in the context of physical and functional protein-protein interactions, genetic variation, DNA methylation and gene expression data from a study on Rheumatoid Arthritis. We identified functionally related genes with multiple alterations.


2021 ◽  
Author(s):  
Nikolaj Riis Christensen ◽  
Christian Parsbæk Pedersen ◽  
Vita Sereikaite ◽  
Jannik Nedergaard Pedersen ◽  
Maria Vistrup-Parry ◽  
...  

SUMMARYThe organization of the postsynaptic density (PSD), a protein-dense semi-membraneless organelle, is mediated by numerous specific protein-protein interactions (PPIs) which constitute a functional post-synapse. Postsynaptic density protein 95 (PSD-95) interacts with a manifold of proteins, including the C-terminal of transmembrane AMPA receptor (AMAPR) regulatory proteins (TARPs). Here, we uncover the minimal essential peptide responsible for the stargazin (TARP-γ2) mediated liquid-liquid phase separation (LLPS) formation of PSD-95 and other key protein constituents of the PSD. Furthermore, we find that pharmacological inhibitors of PSD-95 can facilitate formation of LLPS. We found that in some cases LLPS formation is dependent on multivalent interactions while in other cases short peptides carrying a high charge are sufficient to promote LLPS in complex systems. This study offers a new perspective on PSD-95 interactions and their role in LLPS formation, while also considering the role of affinity over multivalency in LLPS systems.


Sign in / Sign up

Export Citation Format

Share Document