scholarly journals Circumventing the optical diffraction limit with customized speckles

2020 ◽  
Author(s):  
Nicholas Bender ◽  
Mengyuan Sun ◽  
Hasan Yılmaz ◽  
Joerg Bewersdorf ◽  
Hui Cao

Speckle patterns have been widely used in imaging techniques such as ghost imaging, dynamic speckle illumination microscopy, structured illumination microscopy, and photoacoustic fluctuation imaging. Recent advances in the ability to control the statistical properties of speckles has enabled the customization of speckle patterns for specific imaging applications. In this work, we design and create special speckle patterns for parallelized nonlinear pattern-illumination microscopy based on fluorescence photoswitching. We present a proof-of-principle experimental demonstration where we obtain a spatial resolution three times higher than the diffraction limit of the illumination optics in our setup. Furthermore, we show that tailored speckles vastly outperform standard speckles. Our work establishes that customized speckles are a potent tool in parallelized super-resolution microscopy.

2021 ◽  
Author(s):  
Krishnendu Samanta ◽  
Joby Joseph

Abstract Structured illumination microscopy (SIM) is one of the most significant widefield super-resolution optical imaging techniques. The conventional SIM utilizes a sinusoidal structured pattern to excite the fluorescent sample; which eventually down-modulates higher spatial frequency sample information within the diffraction-limited passband of the microscopy system and provides around two-fold resolution enhancement over diffraction limit after suitable computational post-processing. Here we provide an overview of the basic principle, image reconstruction, technical development of the SIM technique. Nonetheless, in order to push the SIM resolution further towards the extreme nanoscale dimensions, several different approaches are launched apart from the conventional SIM. Among the various SIM methods, some of the important techniques e.g. TIRF, non-linear, plasmonic, speckle SIM etc. are discussed elaborately. Moreover, we highlight different implementations of SIM in various other imaging modalities to enhance their imaging performances with augmented capabilities. Finally, some future outlooks are mentioned which might develop fruitfully and pave the way for new discoveries in near future.


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 364
Author(s):  
Meiting Wang ◽  
Jiajie Chen ◽  
Lei Wang ◽  
Xiaomin Zheng ◽  
Jie Zhou ◽  
...  

The super-resolution imaging technique of structured illumination microscopy (SIM) enables the mixing of high-frequency information into the optical transmission domain via light-source modulation, thus breaking the optical diffraction limit. Correlative SIM, which combines other techniques with SIM, offers more versatility or higher imaging resolution than traditional SIM. In this review, we first briefly introduce the imaging mechanism and development trends of conventional SIM. Then, the principles and recent developments of correlative SIM techniques are reviewed. Finally, the future development directions of SIM and its correlative microscopies are presented.


2016 ◽  
Vol 09 (03) ◽  
pp. 1630010 ◽  
Author(s):  
Jianling Chen ◽  
Caimin Qiu ◽  
Minghai You ◽  
Xiaogang Chen ◽  
Hongqin Yang ◽  
...  

Optical microscopy allows us to observe the biological structures and processes within living cells. However, the spatial resolution of the optical microscopy is limited to about half of the wavelength by the light diffraction. Structured illumination microscopy (SIM), a type of new emerging super-resolution microscopy, doubles the spatial resolution by illuminating the specimen with a patterned light, and the sample and light source requirements of SIM are not as strict as the other super-resolution microscopy. In addition, SIM is easier to combine with the other imaging techniques to improve their imaging resolution, leading to the developments of diverse types of SIM. SIM has great potential to meet the various requirements of living cells imaging. Here, we review the recent developments of SIM and its combination with other imaging techniques.


2021 ◽  
Vol 22 (4) ◽  
pp. 1903
Author(s):  
Ivona Kubalová ◽  
Alžběta Němečková ◽  
Klaus Weisshart ◽  
Eva Hřibová ◽  
Veit Schubert

The importance of fluorescence light microscopy for understanding cellular and sub-cellular structures and functions is undeniable. However, the resolution is limited by light diffraction (~200–250 nm laterally, ~500–700 nm axially). Meanwhile, super-resolution microscopy, such as structured illumination microscopy (SIM), is being applied more and more to overcome this restriction. Instead, super-resolution by stimulated emission depletion (STED) microscopy achieving a resolution of ~50 nm laterally and ~130 nm axially has not yet frequently been applied in plant cell research due to the required specific sample preparation and stable dye staining. Single-molecule localization microscopy (SMLM) including photoactivated localization microscopy (PALM) has not yet been widely used, although this nanoscopic technique allows even the detection of single molecules. In this study, we compared protein imaging within metaphase chromosomes of barley via conventional wide-field and confocal microscopy, and the sub-diffraction methods SIM, STED, and SMLM. The chromosomes were labeled by DAPI (4′,6-diamidino-2-phenylindol), a DNA-specific dye, and with antibodies against topoisomerase IIα (Topo II), a protein important for correct chromatin condensation. Compared to the diffraction-limited methods, the combination of the three different super-resolution imaging techniques delivered tremendous additional insights into the plant chromosome architecture through the achieved increased resolution.


2020 ◽  
Vol 52 (1) ◽  
pp. 369-393
Author(s):  
Minami Yoda

Quantifying submillimeter flows using optical diagnostic techniques is often limited by a lack of spatial resolution and optical access. This review discusses two super-resolution imaging techniques, structured illumination microscopy and total internal reflection fluorescence or microscopy, which can visualize bulk and interfacial flows, respectively, at spatial resolutions below the classic diffraction limits. First, we discuss the theory and applications of structured illumination for optical sectioning, i.e., imaging a thin slice of a flow illuminated over its entire volume. Structured illumination can be used to visualize the interior of multiphase flows such as sprays by greatly reducing secondary scattering. Second, the theory underlying evanescent waves is introduced, followed by a review of how total internal reflection microscopy has been used to visualize interfacial flows over the last 15 years. Both techniques, which are starting to be used in fluid mechanics, could significantly improve quantitative imaging of microscale and macroscale flows.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tianyu Zhao ◽  
Zhaojun Wang ◽  
Tongsheng Chen ◽  
Ming Lei ◽  
Baoli Yao ◽  
...  

Super-resolution microscopy surpasses the diffraction limit to enable the observation of the fine details in sub-cellular structures and their dynamics in diverse biological processes within living cells. Structured illumination microscopy (SIM) uses a relatively low illumination light power compared with other super-resolution microscopies and has great potential to meet the demands of live-cell imaging. However, the imaging acquisition and reconstruction speeds limit its further applications. In this article, recent developments all targeted at improving the overall speed of SIM are reviewed. These comprise both hardware and software improvements, which include a reduction in the number of raw images, GPU acceleration, deep learning and the spatial domain reconstruction. We also discuss the application of these developments in live-cell imaging.


2019 ◽  
Author(s):  
Anna Maria Ranieri ◽  
Kathryn Leslie ◽  
Song Huang ◽  
Stefano Stagni ◽  
Denis Jacquemin ◽  
...  

There is a lack of molecular probes for imaging bacteria, in comparison to the array of such tools available for the imaging of mammalian cells. This is especially so for correlative probes, which are proving to be powerful tools for enhancing the imaging of live cells. In this work a platinum(II)-naphthalimide molecule has been developed to extend small molecule correlative probes to bacterial imaging. The probe was designed to exploit the naphthalimide moiety as a luminescent probe for super-resolution microscopy, with the platinum(II) centre enabling visualisation of the complex with ion nanoscopy. Photophysical characterisation and theoretical studies confirmed that the emission properties of the naphthalimide are not altered by the platinum(II) centre. Structured illumination microscopy (SIM) imaging on live <i>Bacillus cereus</i>revealed that the platinum(II) centre does not change the sub-cellular localisation of the naphthalimide, and confirmed the suitability of the probe for super-resolution microscopy. NanoSIMS analysis of the sample was used to monitor the uptake of the platinum(II) complex within the bacteria and proved the correlative action of the probe. The successful combination of these two probe moieties with no perturbation of their individual detection introduces a platform for a versatile range of new correlative probes for bacteria.


Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 248
Author(s):  
Xiaojuan Yang ◽  
Wim Annaert

Synapse structures, including neuronal and immunological synapses, can be seen as the plasma membrane contact sites between two individual cells where information is transmitted from one cell to the other. The distance between the two plasma membranes is only a few tens of nanometers, but these areas are densely populated with functionally different proteins, including adhesion proteins, receptors, and transporters. The narrow space between the two plasma membranes has been a barrier for resolving the synaptic architecture due to the diffraction limit in conventional microscopy (~250 nm). Various advanced super-resolution microscopy techniques, such as stimulated emission depletion (STED), structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM), bypass the diffraction limit and provide a sub-diffraction-limit resolving power, ranging from 10 to 100 nm. The studies using super-resolution microscopy have revealed unprecedented details of the nanoscopic organization and dynamics of synaptic molecules. In general, most synaptic proteins appear to be heterogeneously distributed and form nanodomains at the membranes. These nanodomains are dynamic functional units, playing important roles in mediating signal transmission through synapses. Herein, we discuss our current knowledge on the super-resolution nanoscopic architecture of synapses and their functional implications, with a particular focus on the neuronal synapses and immune synapses.


Author(s):  
Kirti Prakash

We report that high-density single-molecule super-resolution microscopy can be achieved with a conventional epifluorescence microscope set-up and a mercury arc lamp. The configuration termed as laser-free super-resolution microscopy (LFSM) is an extension of single-molecule localization microscopy (SMLM) techniques and allows single molecules to be switched on and off (a phenomenon termed as ‘blinking’), detected and localized. The use of a short burst of deep blue excitation (350–380 nm) can be further used to reactivate the blinking, once the blinking process has slowed or stopped. A resolution of 90 nm is achieved on test specimens (mouse and amphibian meiotic chromosomes). Finally, we demonstrate that stimulated emission depletion and LFSM can be performed on the same biological sample using a simple commercial mounting medium. It is hoped that this type of correlative imaging will provide a basis for a further enhanced resolution. This article is part of the Theo Murphy meeting issue ‘Super-resolution structured illumination microscopy (part 1)’.


Sign in / Sign up

Export Citation Format

Share Document