scholarly journals Thyroid hormone regulates proximodistal identity in the fin skeleton

2020 ◽  
Author(s):  
Yinan Hu ◽  
Melody Harper ◽  
Benjamin Acosta ◽  
Joan Donahue ◽  
Hoa Bui ◽  
...  

AbstractAcross the ∼30,000 species of ray-finned fish, fins show incredible diversity in overall shape and in the patterning of the supportive bony rays. Fin length mutant zebrafish have provided critical insights into the developmental pathways that regulate relative fin size. However, the processes that govern skeletal patterning along the proximodistal axis of the fin have remained less well understood. Here, we show that thyroid hormone regulates proximodistal identity of fin rays, distalizing gene expression profiles, morphogenetic processes during outgrowth, and ultimate morphology of the fin. This role for thyroid hormone in specifying proximodistal identity appears conserved between development and regeneration, in all the fins, and between species. We demonstrate that proximodistal identity is regulated independently from pathways that determine size, and we show that modulating proximodistal patterning relative to growth can recapitulate the spectrum of fin ray diversity found in nature.

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Hiroyuki Yajima ◽  
Ishii Sumiyasu ◽  
Wataru Miyazaki ◽  
Noriyuki Koibuchi

Abstract Background: Thyroid hormone (TH) plays essential roles in the development of the cerebellum by regulating transcription of target genes. TH binds to TH receptor (TR) located in the cell nucleus and stimulates transcription through TH response element (TRE). The expression of many genes is temporary and spatially regulated by TH during cerebellar development. However, the mode of transcription by TR may vary among target genes. In the liver, different duration of TH exposure resulted in distinct gene expression profiles. To examine the mechanisms of transcriptional regulation by TH in cerebellar development, gene expression profile induced by various TH exposure duration was studied. Methods: Anti-thyroid drug propylthiouracil (250 ppm in drinking water) was administered to C57BL/6J mice from the gestational day 14 to postnatal day (P) 7 to generate perinatal hypothyroid mice. To study the effect of continuous TH exposure, TH was subcutaneously administered to hypothyroid pups from P2 to P7 (6 days group). To study the effect of single TH administration, TH was injected on P7 and mice were sacrificed either 6 (6 hours group) or 24 hours (24 hours group) after injection. Cerebellar samples were collected to extract RNA and subject to microarray analysis. Microarray results were confirmed by RT-qPCR. Results: In microarray result, compared with mRNA levels of hypothyroid mice, 6 days group induced upregulation in 1007 genes and downregulation in 1009 genes, 6 hours group induced upregulation in 355 genes and downregulation in 977 genes, and 24 hours group induced upregulation in 365 genes and downregulation in 1121 genes. Only 7.6% of the genes were overlapped in three groups among positively regulated genes. In contrast, 57.2% of the genes were common in the negatively regulated genes. In RT-qPCR result, among genes known to harbor TRE, Hairless, Pcp2, and Nrgn, showed differential upregulation patterns. Hairless was upregulated in all groups, whereas Pcp2 was upregulated only in 5 days group and Nrgn was not upregulated in all groups. These results suggest that different mode of transcriptional regulation occurred in an exposure time-dependent manner of TH. Conclusion: We identified gene groups whose expression were modified by TH during cerebellar development. TH distinctively regulates transcription of target genes depending on the exposure schedule in mouse developing cerebellum.


2004 ◽  
Vol 171 (4S) ◽  
pp. 349-350
Author(s):  
Gaelle Fromont ◽  
Michel Vidaud ◽  
Alain Latil ◽  
Guy Vallancien ◽  
Pierre Validire ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document