scholarly journals Confocal Laser-Scanning Fluorescence-Lifetime Single-Molecule Localisation Microscopy

2020 ◽  
Author(s):  
Jan Christoph Thiele ◽  
Dominic Helmerich ◽  
Nazar Oleksiievets ◽  
Roman Tsukanov ◽  
Eugenia Butkevich ◽  
...  

AbstractFluorescence lifetime imaging microscopy (FLIM) is an important technique that adds another dimension to the intensity and colour information of conventional microscopy. In particular, it allows for multiplexing fluorescent labels that have otherwise similar spectral properties. Currently, the only super-resolution technique that is capable of recording super-resolved images with lifetime information is STimulated Emission Depletion (STED) microscopy. In contrast, all Single-Molecule Localisation Microscopy (SMLM) techniques that employ wide-field cameras completely lack the lifetime dimension. Here, we combine Fluorescence-Lifetime Confocal Laser-Scanning Microscopy (FL-CLSM) with SMLM for realising single-molecule localisation-based fluorescence-lifetime super-resolution imaging (FL-SMLM). Besides yielding images with a spatial resolution much beyond the diffraction limit, it determines the fluorescence lifetime of all localised molecules. We validate our technique by applying it to direct STochastic Optical Reconstruction Microscopy (dSTORM) and Points Accumulation for Imaging in Nanoscale Topography (PAINT) imaging of fixed cells, and we demonstrate its multiplexing capability on samples with two different labels that differ only by fluorescence lifetime but not by their spectral properties.

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Nazar Oleksiievets ◽  
Yelena Sargsyan ◽  
Jan Christoph Thiele ◽  
Nikolaos Mougios ◽  
Shama Sograte-Idrissi ◽  
...  

AbstractDNA point accumulation for imaging in nanoscale topography (DNA-PAINT) is a powerful super-resolution technique highly suitable for multi-target (multiplexing) bio-imaging. However, multiplexed imaging of cells is still challenging due to the dense and sticky environment inside a cell. Here, we combine fluorescence lifetime imaging microscopy (FLIM) with DNA-PAINT and use the lifetime information as a multiplexing parameter for targets identification. In contrast to Exchange-PAINT, fluorescence lifetime PAINT (FL-PAINT) can image multiple targets simultaneously and does not require any fluid exchange, thus leaving the sample undisturbed and making the use of flow chambers/microfluidic systems unnecessary. We demonstrate the potential of FL-PAINT by simultaneous imaging of up to three targets in a cell using both wide-field FLIM and 3D time-resolved confocal laser scanning microscopy (CLSM). FL-PAINT can be readily combined with other existing techniques of multiplexed imaging and is therefore a perfect candidate for high-throughput multi-target bio-imaging.


Author(s):  
Thomas M. Jovin ◽  
Michel Robert-Nicoud ◽  
Donna J. Arndt-Jovin ◽  
Thorsten Schormann

Light microscopic techniques for visualizing biomolecules and biochemical processes in situ have become indispensable in studies concerning the structural organization of supramolecular assemblies in cells and of processes during the cell cycle, transformation, differentiation, and development. Confocal laser scanning microscopy offers a number of advantages for the in situ localization and quantitation of fluorescence labeled targets and probes: (i) rejection of interfering signals emanating from out-of-focus and adjacent structures, allowing the “optical sectioning” of the specimen and 3-D reconstruction without time consuming deconvolution; (ii) increased spatial resolution; (iii) electronic control of contrast and magnification; (iv) simultanous imaging of the specimen by optical phenomena based on incident, scattered, emitted, and transmitted light; and (v) simultanous use of different fluorescent probes and types of detectors.We currently use a confocal laser scanning microscope CLSM (Zeiss, Oberkochen) equipped with 3-laser excitation (u.v - visible) and confocal optics in the fluorescence mode, as well as a computer-controlled X-Y-Z scanning stage with 0.1 μ resolution.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (10) ◽  
pp. 7-15
Author(s):  
HANNA KOIVULA ◽  
DOUGLAS BOUSFIELD ◽  
MARTTI TOIVAKKA

In the offset printing process, ink film splitting has an important impact on formation of ink filaments. The filament size and its distribution influence the leveling of ink and hence affect ink setting and the print quality. However, ink filaments are difficult to image due to their short lifetime and fine length scale. Due to this difficulty, limited work has been reported on the parameters that influence filament size and methods to characterize it. We imaged ink filament remains and quantified some of their characteristics by changing printing speed, ink amount, and fountain solution type. Printed samples were prepared using a laboratory printability tester with varying ink levels and operating settings. Rhodamine B dye was incorporated into fountain solutions to aid in the detection of the filaments. The prints were then imaged with a confocal laser scanning microscope (CLSM) and images were further analyzed for their surface topography. Modeling of the pressure pulses in the printing nip was included to better understand the mechanism of filament formation and the origin of filament length scale. Printing speed and ink amount changed the size distribution of the observed filament remains. There was no significant difference between fountain solutions with or without isopropyl alcohol on the observed patterns of the filament remains.


2012 ◽  
Vol 11 (3) ◽  
pp. 669-674 ◽  
Author(s):  
Szabolcs Szilveszter ◽  
Botond Raduly ◽  
Szilard Bucs ◽  
Beata Abraham ◽  
Szabolcs Lanyi ◽  
...  

2009 ◽  
Vol 18 (1) ◽  
pp. 11-16
Author(s):  
E.V. Soldatenko ◽  
A.A. Petrov

The morphology of the copulatory apparatus and associated cuticular structures in Planorbis planorbis was studied by light microscopy, SEM, TEM and confocal laser scanning microscopy. The significance of these cuticular structures for the taxonomic status of the species and for the systematics of the family Planorbidae in general is discussed.


Sign in / Sign up

Export Citation Format

Share Document