scholarly journals Aberrant DJ-1 expression underlies L-type calcium channel hypoactivity in tuberous sclerosis complex and Alzheimer’s disease

2020 ◽  
Author(s):  
Farr Niere ◽  
Luisa P. Cacheaux ◽  
Ayse Uneri ◽  
Sanjeev Namjoshi ◽  
Cameron Reynoldson ◽  
...  

AbstractL-type voltage-dependent Ca2+ channels (L-VDCC) integrate synaptic signals to facilitate a plethora of cellular mechanisms. L-VDCC dysfunction is implicated in several neurological and psychiatric diseases. Despite their importance, signals upstream of L-VDCC activity that regulate their channel density, however, are poorly defined. In disease models with overactive mammalian target of rapamycin complex 1 (mTORC1) signaling (or mTORopathies), including tuberous sclerosis (TS) and Alzheimer’s disease (AD), we report a novel mechanism downstream of mTORC1 signaling that results in a deficit in dendritic L-VDCC activity. Deficits in L-VDCC activity are associated with increased expression of the mTORC1-regulated RNA-binding protein DJ-1. DJ-1 binds the mRNA coding the auxiliary Ca2+ channel subunit α2δ2 responsible for shuttling L-VDCC to the membrane and represses its expression. Moreover, this novel DJ-1/α2δ2/L-VDCC pathway is disrupted in human AD and preclinical models of AD and TS. Our discovery that DJ-1 directs L-VDCC activity and L-VDCC-associated protein α2δ2 at the synapse suggests that DJ-1/α2δ2/L-VDCC is a common, fundamental pathway disrupted in TS and AD that can be targeted in clinical mTORopathies.Significance StatementMany neurological disorders share symptoms, despite disparity among diseases. Treatments are prescribed based on diagnosis rather than individual symptoms. While only treating symptoms may obscure the disease, mechanism-based drug development allows the two approaches to converge. Hub proteins, those that coordinate the expression of proteins that mediate specific cellular functions, may be dysregulated across a broad range of disorders. Herein, we show that the RNA-binding protein DJ-1 controls the activity of L-type voltage-dependent calcium channels (L-VDCC), via the expression of its auxiliary subunit alpha2delta2 (α2δ2). Importantly, we demonstrate that this novel DJ-1/α2δ2/L-VDCC pathway is commonly disrupted among neurological disorders, namely Alzheimer’s disease (AD) and Tuberous Sclerosis (TS). Collectively, these data rationalize mechanism-based drug therapy to treat disease.

Author(s):  
Urmi Sengupta ◽  
Mauro Montalbano ◽  
Salome McAllen ◽  
Gerard Minuesa ◽  
Michael Kharas ◽  
...  

2005 ◽  
Vol 332 (2) ◽  
pp. 585-592 ◽  
Author(s):  
Venkatarajan S. Mathura ◽  
Daniel Paris ◽  
Ghania Ait-Ghezala ◽  
Amita Quadros ◽  
Nikunj S. Patel ◽  
...  

2020 ◽  
pp. 247255522095838
Author(s):  
Jeremy D. Baker ◽  
Rikki L. Uhrich ◽  
Timothy J. Strovas ◽  
Aleen D. Saxton ◽  
Brian C. Kraemer

Tauopathies are neurological disorders characterized by intracellular tau deposits forming neurofibrillary tangles, neuropil threads, or other disease-specific aggregates composed of the protein tau. Tauopathy disorders include frontotemporal lobar degeneration, corticobasal degeneration, Pick’s disease, and the largest cause of dementia, Alzheimer’s disease. The lack of disease-modifying therapeutic strategies to address tauopathies remains a critical unmet need in dementia care. Thus, novel broad-spectrum tau-targeted therapeutics could have a profound impact in multiple tauopathy disorders, including Alzheimer’s disease. Here we have designed a drug discovery paradigm to identify inhibitors of the pathological tau-enabling protein, MSUT2. We previously showed that activity of the RNA-binding protein MSUT2 drives tauopathy, including tau-mediated neurodegeneration and cognitive dysfunction, in mouse models. Thus, we hypothesized that MSUT2 inhibitors could be therapeutic for tauopathy disorders. Our pipeline for MSUT2 inhibitory compound identification included a primary AlphaScreen, followed by dose–response validation, a secondary fluorescence polarization orthogonal assay, a tertiary specificity screen, and a preliminary toxicity screen. Our work here serves as a proof-of-principle methodology for finding specific inhibitors of the poly(A) RNA-binding protein MSUT2 interaction. Here we identify 4,4′-diisothiocyanostilbene-2,2′-sulfonic acid (DIDS) as a potential tool compound for future work probing the mechanism of MSUT2-induced tau pathology.


2014 ◽  
Vol 42 (4) ◽  
pp. 1180-1183 ◽  
Author(s):  
Anurada D. Arya ◽  
David I. Wilson ◽  
Diana Baralle ◽  
Michaela Raponi

RBFOX2 (RNA-binding protein, Fox-1 homologue 2)/RBM9 (RNA-binding-motif protein 9)/RTA (repressor of tamoxifen action)/HNRBP2 (hexaribonucleotide-binding protein 2) encodes an RNA-binding protein involved in tissue specific alternative splicing regulation and steroid receptors transcriptional activity. Its ability to regulate specific splicing profiles depending on context has been related to different expression levels of the RBFOX2 protein itself and that of other splicing regulatory proteins involved in the shared modulation of specific genes splicing. However, this cannot be the sole explanation as to why RBFOX2 plays a widespread role in numerous cellular mechanisms from development to cell survival dependent on cell/tissue type. RBFOX2 isoforms with altered protein domains exist. In the present article, we describe the main RBFOX2 protein domains, their importance in the context of splicing and transcriptional regulation and we propose that RBFOX2 isoform distribution may play a fundamental role in RBFOX2-specific cellular effects.


2007 ◽  
Vol 177 (4S) ◽  
pp. 78-79
Author(s):  
Lioudmila Sitnikova ◽  
Gary Mendese ◽  
Qin Lui ◽  
Bruce A. Woda ◽  
Di Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document