scholarly journals Lipoprotein particles interact with membranes and transfer their cargo without receptors

2020 ◽  
Author(s):  
Birgit Plochberger ◽  
Taras Sych ◽  
Florian Weber ◽  
Jiri Novacek ◽  
Markus Axmann ◽  
...  

AbstractLipid transfer from lipoprotein particles to cells is essential for lipid homeostasis. High density lipoprotein (HDL) particles are mainly captured by cell-membrane-associated scavenger receptor class B type 1 (SR-B1) from the blood stream while low and very low density lipoprotein (LDL, VLDL) particles are mostly taken up by receptor-mediated endocytosis. However, the role of the target lipid membrane itself in the transfer process has been largely neglected so far. Here, we study how lipoprotein particles (HDL, LDL and VLDL) interact with synthetic lipid bilayers and cell-derived membranes and transfer their cargo subsequently. Employing cryo-electron microscopy, spectral imaging and fluorescence (cross) correlation spectroscopy allowed us to observe integration of all major types of lipoprotein particles into the membrane and delivery of their cargo in a receptor-independent manner. Importantly, biophysical properties of the target cell membranes change upon cargo delivery. The concept of receptor-independent interaction of lipoprotein particles with membranes helps to better understand lipoprotein particle biology and can be exploited for novel treatments of dyslipidemia diseases.

2018 ◽  
Vol 2 (21) ◽  
pp. 2848-2861 ◽  
Author(s):  
Moua Yang ◽  
Andaleb Kholmukhamedov ◽  
Marie L. Schulte ◽  
Brian C. Cooley ◽  
Na’il O. Scoggins ◽  
...  

Abstract Dyslipidemia is a risk factor for clinically significant thrombotic events. In this condition, scavenger receptor CD36 potentiates platelet reactivity through recognition of circulating oxidized lipids. CD36 promotes thrombosis by activating redox-sensitive signaling molecules, such as the MAPK extracellular signal-regulated kinase 5 (ERK5). However, the events downstream of platelet ERK5 are not clear. In this study, we report that oxidized low-density lipoprotein (oxLDL) promotes exposure of procoagulant phosphatidylserine (PSer) on platelet surfaces. Studies using pharmacologic inhibitors indicate that oxLDL-CD36 interaction–induced PSer exposure requires apoptotic caspases in addition to the downstream CD36-signaling molecules Src kinases, hydrogen peroxide, and ERK5. Caspases promote PSer exposure and, subsequently, recruitment of the prothrombinase complex, resulting in the generation of fibrin from the activation of thrombin. Caspase activity was observed when platelets were stimulated with oxLDL. This was prevented by inhibiting CD36 and ERK5. Furthermore, oxLDL potentiates convulxin/glycoprotein VI–mediated fibrin formation by platelets, which was prevented when CD36, ERK5, and caspases were inhibited. Using 2 in vivo arterial thrombosis models in apoE-null hyperlipidemic mice demonstrated enhanced arterial fibrin accumulation upon vessel injury. Importantly, absence of ERK5 in platelets or mice lacking CD36 displayed decreased fibrin accumulation in high-fat diet–fed conditions comparable to that seen in chow diet–fed animals. These findings suggest that platelet signaling through CD36 and ERK5 induces a procoagulant phenotype in the hyperlipidemic environment by enhancing caspase-mediated PSer exposure.


Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3468-3478 ◽  
Author(s):  
Adoración Venceslá ◽  
María Ángeles Corral-Rodríguez ◽  
Manel Baena ◽  
Mónica Cornet ◽  
Montserrat Domènech ◽  
...  

Abstract Hemophilia A (HA) is an X-linked bleeding disorder caused by a wide variety of mutations in the factor 8 (F8) gene, leading to absent or deficient factor VIII (FVIII). We analyzed the F8 gene of 267 unrelated Spanish patients with HA. After excluding patients with the common intron-1 and intron-22 inversions and large deletions, we detected 137 individuals with small mutations, 31 of which had not been reported previously. Eleven of these were nonsense, frameshift, and splicing mutations, whereas 20 were missense changes. We assessed the impact of the 20 substitutions based on currently available information about FV and FVIII structure and function relationship, including previously reported results of replacements at these and topologically equivalent positions. Although most changes are likely to cause gross structural perturbations and concomitant cofactor instability, p.Ala375Ser is predicted to affect cofactor activation. Finally, 3 further mutations (p.Pro64Arg, p.Gly494Val, and p.Asp2267Gly) appear to affect cofactor interactions with its carrier protein, von Willebrand factor, with the scavenger receptor low-density lipoprotein receptor–related protein (LRP), and/or with the substrate of the FVIIIapi•FIXa (Xase) complex, factor X. Characterization of these novel mutations is important for adequate genetic counseling in HA families, but also contributes to a better understanding of FVIII structure-function relationship.


2009 ◽  
Vol 174 (6) ◽  
pp. 2061-2072 ◽  
Author(s):  
Paul Gutwein ◽  
Mohamed Sadek Abdel-Bakky ◽  
Anja Schramme ◽  
Kai Doberstein ◽  
Nicole Kämpfer-Kolb ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document