scholarly journals Improvements to the ARTIC multiplex PCR method for SARS-CoV-2 genome sequencing using nanopore

Author(s):  
John R Tyson ◽  
Phillip James ◽  
David Stoddart ◽  
Natalie Sparks ◽  
Arthur Wickenhagen ◽  
...  

AbstractGenome sequencing has been widely deployed to study the evolution of SARS-CoV-2 with more than 90,000 genome sequences uploaded to the GISAID database. We published a method for SARS-CoV-2 genome sequencing (https://www.protocols.io/view/ncov-2019-sequencing-protocol-bbmuik6w) online on January 22, 2020. This approach has rapidly become the most popular method for sequencing SARS-CoV-2 due to its simplicity and cost-effectiveness. Here we present improvements to the original protocol: i) an updated primer scheme with 22 additional primers to improve genome coverage, ii) a streamlined library preparation workflow which improves demultiplexing rate for up to 96 samples and reduces hands-on time by several hours and iii) cost savings which bring the reagent cost down to £10 per sample making it practical for individual labs to sequence thousands of SARS-CoV-2 genomes to support national and international genomic epidemiology efforts.

Author(s):  
AS Speranskaya ◽  
VV Kaptelova ◽  
AV Valdokhina ◽  
VP Bulanenko ◽  
AE Samoilov ◽  
...  

ABSTRACTHere we provide technical data for amplifying the complete genome of SARS-CoV-2 from clinical samples using only seventeen pairs of primers. We demonstrate that the СV2000bp primer panel successfully produces genomes when used with the residual total RNA extracts from positive clinical samples following diagnostic RT-PCRs (with Ct in the range from 13 to 20). The library preparation method reported here includes genome amplification of ~1750-2000 bp fragments followed by ultrasonic fragmentation combined with the introduction of Illumina compatible adapters. Using the SCV2000bp panel, 25 complete SARS-CoV-2 virus genome sequences were sequenced from clinical samples of COVID-19 patients from Moscow obtained in late March - early April.


2021 ◽  
Author(s):  
Teodora Ribarska ◽  
Pål Marius Bjørnstad ◽  
Arvind Y.M. Sundaram ◽  
Gregor D. Gilfillan

Abstract Background Novel commercial kits for whole genome library preparation for next-generation sequencing on Illumina platforms promise shorter workflows, lower inputs and cost savings. Time savings are achieved by employing enzymatic DNA fragmentation and by combining end-repair and tailing reactions. Fewer cleanup steps also allow greater DNA input flexibility (1 ng-1 µg), PCR-free options from 100 ng DNA, and lower price as compared to the well-established sonication and tagmentation-based DNA library preparation kits. Results We compared the performance of four enzymatic fragmentation-based DNA library preparation kits (from New England Biolabs, Roche, Swift Biosciences and Quantabio) to a tagmentation-based kit (Illumina) using low input DNA amounts (10 ng) and PCR-free reactions with 100 ng DNA. With four technical replicates of each input amount and kit, we compared the kits` fragmentation sequence-bias as well as performance parameters such as sequence coverage and the clinically relevant detection of single nucleotide and indel variants. While all kits produced high quality sequence data and demonstrated similar performance, several enzymatic fragmentation methods produced library insert sizes which deviated from those intended. Libraries with longer insert lengths performed better in terms of coverage, SNV and indel detection. Lower performance of shorter-insert libraries could be explained by loss of sequence coverage to overlapping paired-end reads, exacerbated by the preferential sequencing of shorter fragments on Illumina sequencers. We also observed that libraries prepared with minimal or no PCR performed best with regard to indel detection. Conclusions The enzymatic fragmentation-based DNA library preparation kits from NEB, Roche, Swift and Quantabio are good alternatives to the tagmentation based Nextera DNA flex kit from Illumina, offering reproducible results using flexible DNA inputs, quick workflows and lower prices. Libraries with insert DNA fragments longer than the cumulative sum of both read lengths avoid read overlap, thus produce more informative data that leads to strongly improved genome coverage and consequently also increased sensitivity and precision of SNP and indel detection. In order to best utilize such enzymatic fragmentation reagents, researchers should be prepared to invest time to optimize fragmentation conditions for their particular samples.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Dave J. Baker ◽  
Alp Aydin ◽  
Thanh Le-Viet ◽  
Gemma L. Kay ◽  
Steven Rudder ◽  
...  

AbstractWe present CoronaHiT, a platform and throughput flexible method for sequencing SARS-CoV-2 genomes (≤ 96 on MinION or > 96 on Illumina NextSeq) depending on changing requirements experienced during the pandemic. CoronaHiT uses transposase-based library preparation of ARTIC PCR products. Method performance was demonstrated by sequencing 2 plates containing 95 and 59 SARS-CoV-2 genomes on nanopore and Illumina platforms and comparing to the ARTIC LoCost nanopore method. Of the 154 samples sequenced using all 3 methods, ≥ 90% genome coverage was obtained for 64.3% using ARTIC LoCost, 71.4% using CoronaHiT-ONT and 76.6% using CoronaHiT-Illumina, with almost identical clustering on a maximum likelihood tree. This protocol will aid the rapid expansion of SARS-CoV-2 genome sequencing globally.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Myat Htut Nyunt ◽  
Hnin Ohnmar Soe ◽  
Kay Thi Aye ◽  
Wah Wah Aung ◽  
Yi Yi Kyaw ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a major health concern globally. Genomic epidemiology is an important tool to assess the pandemic of coronavirus disease 2019 (COVID-19). Several mutations have been reported by genome analysis of the SARS-CoV-2. In the present study, we investigated the mutational and phylogenetic analysis of 30 whole-genome sequences for the virus's genomic characteristics in the specimens collected in the early phase of the pandemic (March–June, 2020) and the sudden surge of local transmission (August–September, 2020). The four samples in the early phase of infection were B.6 lineage and located within a clade of the samples collected at the same time in Singapore and Malaysia, while five returnees by rescue flights showed the lineage B. 1.36.1 (three from India), B.1.1 (one from India) and B.1.80 (one from China). However, there was no evidence of local spread from these returnees. Further, all 19 whole-genome sequences collected in the sudden surge of local transmission showed lineage B.1.36. The surge of the second wave on SARS-CoV-2 infection was linked to the single-introduction of a variant (B.1.36) that may result from the strict restriction of international travel and containment efforts. These genomic data provides the useful information to disease control and prevention strategy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kathy E. Raven ◽  
Sophia T. Girgis ◽  
Asha Akram ◽  
Beth Blane ◽  
Danielle Leek ◽  
...  

AbstractWhole-genome sequencing is likely to become increasingly used by local clinical microbiology laboratories, where sequencing volume is low compared with national reference laboratories. Here, we describe a universal protocol for simultaneous DNA extraction and sequencing of numerous different bacterial species, allowing mixed species sequence runs to meet variable laboratory demand. We assembled test panels representing 20 clinically relevant bacterial species. The DNA extraction process used the QIAamp mini DNA kit, to which different combinations of reagents were added. Thereafter, a common protocol was used for library preparation and sequencing. The addition of lysostaphin, lysozyme or buffer ATL (a tissue lysis buffer) alone did not produce sufficient DNA for library preparation across the species tested. By contrast, lysozyme plus lysostaphin produced sufficient DNA across all 20 species. DNA from 15 of 20 species could be extracted from a 24-h culture plate, while the remainder required 48–72 h. The process demonstrated 100% reproducibility. Sequencing of the resulting DNA was used to recapitulate previous findings for species, outbreak detection, antimicrobial resistance gene detection and capsular type. This single protocol for simultaneous processing and sequencing of multiple bacterial species supports low volume and rapid turnaround time by local clinical microbiology laboratories.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Weili Cai ◽  
Schyler Nunziata ◽  
John Rascoe ◽  
Michael J. Stulberg

AbstractHuanglongbing (HLB) is a worldwide deadly citrus disease caused by the phloem-limited bacteria ‘Candidatus Liberibacter asiaticus’ (CLas) vectored by Asian citrus psyllids. In order to effectively manage this disease, it is crucial to understand the relationship among the bacterial isolates from different geographical locations. Whole genome sequencing approaches will provide more precise molecular characterization of the diversity among populations. Due to the lack of in vitro culture, obtaining the whole genome sequence of CLas is still a challenge, especially for medium to low titer samples. Hundreds of millions of sequencing reads are needed to get good coverage of CLas from an HLB positive citrus sample. In order to overcome this limitation, we present here a new method, Agilent SureSelect XT HS target enrichment, which can specifically enrich CLas from a metagenomic sample while greatly reducing cost and increasing whole genome coverage of the pathogen. In this study, the CLas genome was successfully sequenced with 99.3% genome coverage and over 72X sequencing coverage from low titer tissue samples (equivalent to 28.52 Cq using Li 16 S qPCR). More importantly, this method also effectively captures regions of diversity in the CLas genome, which provides precise molecular characterization of different strains.


2018 ◽  
Vol 7 (6) ◽  
Author(s):  
Marcela Carina Audisio ◽  
Leonardo Albarracín ◽  
Maria Julia Torres ◽  
Lucila Saavedra ◽  
Elvira Maria Hebert ◽  
...  

This report describes the draft genome sequences of Lactobacillus salivarius A3iob and Lactobacillus johnsonii CRL1647, probiotic strains isolated from the gut of honeybee Apis mellifera workers. The reads were generated by a whole-genome sequencing (WGS) strategy on an Illumina MiSeq sequencer and were assembled into contigs with total sizes of 2,054,490 and 2,137,413 bp for the A3iob and CRL1647 strains, respectively.


2019 ◽  
Author(s):  
Stephen C. Watts ◽  
Kathryn E. Holt

AbstractHaemophilus influenzaeexclusively colonises the human nasopharynx and can cause a variety of respiratory infections as well as invasive diseases including meningitis and sepsis. A key virulence determinant ofH. influenzaeis the polysaccharide capsule of which six serotypes are known, each encoded by a distinct variation of the capsule biosynthesis locus (cap-a tocap-f).H. influenzaetype b (Hib) was historically responsible for the majority of invasiveH. influenzaedisease and prevalence has been markedly reduced in countries that have implemented vaccination programs targeting this serotype. In the postvaccine era, non-typeableH. influenzaeemerged as the most dominant group causing disease but in recent years a resurgence of encapsulatedH. influenzaestrains has also been observed, most notably serotype a. Given the increasing incidence of encapsulated strains and the high frequency of Hib in countries without vaccination programs, there is growing interest in genomic epidemiology ofH. influenzae. Here we present hicap, a software tool for rapid in silico serotype prediction fromH. influenzaegenome sequences. hicap is written using Python3 and is freely available at github.com/scwatts/hicap under a GPLv3 license. To demonstrate the utility of hicap, we used it to investigate the cap locus diversity and distribution in 691 high-qualityH. influenzaegenomes from GenBank. These analyses identifiedcaploci in 95 genomes and confirmed the general association of each serotype with a unique clonal lineage and also identified occasional recombination between lineages giving rise to hybridcaploci (2% of encapsulated strains).


2021 ◽  
Author(s):  
Viktorija Sukser ◽  
Ivana Račić ◽  
Sara Rožić ◽  
Lucija Barbarić ◽  
Marina Korolija

Abstract Background: Optimized and efficient library preparation workflow is one of the most important prerequisites for obtaining high quality and quantity of results in massively parallel sequencing (MPS). Our aim was to assess and optimize different steps of Illumina® Nextera® XT assay for analysis of whole mitochondrial genomes.Methods and Results: Among the three long-range high-fidelity DNA polymerases tested here, PrimeSTAR® GXL performed best in aspects of specificity and yield for mitochondrial DNA (mtDNA) enrichment. Furthermore, library quantification combined with individual library-by-library dilution outperformed bead-based normalization in terms of more equal distribution of reads per library, reduced hands-on time and simplified workflow. Increasing the number of amplification cycles in the index-adapters-adding PCR step had no adverse effect on the level of sequencing noise, which remained low both in negative controls and in samples.Conclusions: Optimizations described herein provide beneficial insights for laboratories aiming at implementation and/or advancement of similar MPS workflows (e.g. small genomes, PCR amplicons and plasmids).


2021 ◽  
Author(s):  
Xuan Lin ◽  
Melissa Glier ◽  
Kevin Kuchinski ◽  
Tenysha Ross-Van Mierlo ◽  
David McVea ◽  
...  

Wastewater-based genomic surveillance of the SARS-CoV-2 virus shows promise to complement genomic epidemiology efforts. Multiplex tiled PCR is a desirable approach for targeted genome sequencing of SARS-CoV-2 in wastewater due to its low cost and rapid turnaround time. However, it is not clear how different multiplex tiled PCR primer schemes or wastewater sample matrices impact the resulting SARS-CoV-2 genome coverage. The objective of this work was to assess the performance of three different multiplex primer schemes, consisting of 150bp, 400bp, and 1200bp amplicons, as well as two wastewater sample matrices, influent wastewater and primary sludge, for targeted genome sequencing of SARS-CoV-2. Wastewater samples were collected weekly from five municipal wastewater treatment plants (WWTPs) in the Metro Vancouver region of British Columbia, Canada during a period of increased COVID-19 case counts from February to April, 2021. RNA extracted from clarified influent wastewater provided significantly higher genome coverage (breadth and median depth) than primary sludge samples across all primer schemes. Shorter amplicons appeared more resilient to sample RNA degradation, but were hindered by greater primer pool complexity in the 150bp scheme. The identified optimal primer scheme (400bp) and sample matrix (influent) was capable of detecting the emergence of mutations associated with genomic variants of concern, of which the daily wastewater load significantly correlated with clinical case counts. Taken together, these results provide guidance on best practices for implementing wastewater-based genomic surveillance, and demonstrate its ability to inform epidemiology efforts by detecting genomic variants of concern circulating within a geographic region.


Sign in / Sign up

Export Citation Format

Share Document