scholarly journals HIV cell-to-cell spread slows evolution of drug resistance

2020 ◽  
Author(s):  
Jessica Hunter ◽  
Sandile Cele ◽  
Laurelle Jackson ◽  
Jennifer Giandhari ◽  
Tulio de Oliveira ◽  
...  

AbstractMany enveloped viruses such as HIV have evolved to transmit by two infection modes: cell-free infection and cell-to-cell spread. Cell-to-cell spread is highly efficient as it involves directed viral transmission from the infected to the uninfected cell. In contrast, cell-free infection relies on chance encounters between the virion and cell. Despite the higher efficiency of cell-to-cell spread, there is substantial transmission by cell-free infection in conjunction with cell-to-cell spread. A possible reason is that cell-free infection offers a selective advantage by increasing sensitivity to factors interfering with infection, hence accelerating evolution of resistance relative to cell-to-cell spread alone. Here we investigated whether a combination of cell-free infection and cell-to-cell spread confers a selective advantage in experimental evolution to an antiretroviral drug. We maintained HIV infection using coculture of infected with uninfected cells in the face of moderate inhibition by the reverse transcriptase inhibitor efavirenz. We tested the effect on the rate of drug resistance evolution of replacing one coculture infection cycle with an infection cycle involving cell-free infection only, and observed earlier evolution of drug resistance mutations to efavirenz. When we increased selective pressure by adding a second reverse transcriptase inhibitor, emtricitabine, infection with the cell-free step consistently evolved multidrug resistance to both drugs and was able to replicate. In contrast, infection without a cell-free step mostly failed to evolve multidrug resistance. Therefore, HIV cell-to-cell spread decreases the ability of HIV to rapidly evolve resistance to inhibitors, which is conferred by cell-free infection.Author summaryCell-to-cell spread of HIV differs from cell-free, diffusion-based HIV infection in that viral transmission is directed from the infected to the uninfected cell through cellular interactions. Cell-to-cell spread has been recognized as a highly efficient infection mode that is able to surmount inhibition by antibodies and antiretroviral drugs. However, the effect of HIV cell-to-cell spread on the rate of evolution of viral resistance to infection inhibitors has not been studied. Here we used experimental evolution to investigate the effect of cell-to-cell spread versus cell-free infection on the emergence of drug resistance mutations to one or a combination of antiretroviral drugs. We found that replacing one infection cycle in experimental evolution with cell-free infection, where the filtered supernatant from infected cells, but not the cellular fraction, is used as the viral source, results in more rapid evolution of resistance. The consequences are that multidrug resistance consistently evolves with a cell-free viral cycle, but not when infection is solely by coculture of infected and uninfected cells. A possible consequence is that in environments where HIV cell-to-cell spread may predominate and some residual viral replication occurs in the face of ART, the emergence of drug resistance mutations would be delayed.

2016 ◽  
Vol 55 (1) ◽  
pp. 122-133 ◽  
Author(s):  
David Sacks ◽  
Johanna Ledwaba ◽  
Lynn Morris ◽  
Gillian M. Hunt

ABSTRACTHIV rapidly accumulates resistance mutations following exposure to subtherapeutic concentrations of antiretroviral drugs that reduces treatment efficacy. High-resolution melting analysis (HRMA) has been used to successfully identify single nucleotide polymorphisms (SNPs) and to genotype viral and bacterial species. Here, we tested the ability of HRMA incorporating short unlabeled probes to accurately assign drug susceptibilities at the 103, 181, and 184 codons of the HIV-1 reverse transcriptase gene. The analytical sensitivities of the HRMA assays were 5% of mixed species for K103N and Y181C and 20% for M184V. When applied to 153 HIV-1 patient specimens previously genotyped by Sanger population sequencing, HRMA correctly assigned drug sensitivity or resistance profiles to 80% of the samples at codon 103 (K103K/N) (Cohen's kappa coefficient [κ] > 0.6;P< 0.05), 90% at 181 (Y181Y/C) (κ > 0.74,P< 0.05), and 80% at 184 (M184M/V) (κ > 0.62;P< 0.05). The frequency of incorrect genotypes was very low (≤1 to 2%) for each assay, which in most cases was due to the higher sensitivity of the HRMA assay. Specimens for which drug resistance profiles could not be assigned (9 to 20%) often had polymorphisms in probe binding regions. Thus, HRMA is a rapid, inexpensive, and sensitive method for the determination of drug sensitivities caused by major HIV-1 drug resistance mutations and, after further development to minimize the melting effects of nontargeted polymorphisms, may be suitable for surveillance purposes.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Oluyinka Oladele Opaleye ◽  
Olusola Anuoluwapo Akanbi ◽  
Folakemi Abiodun Osundare ◽  
Bo Wang ◽  
Olufisayo Adesina ◽  
...  

Abstract Background Coinfections of HIV-positive individuals with Hepatitis B and D virus (HBV and HDV) are common and can be associated with rapid liver damage. Several antiretroviral drugs for HIV exhibit anti-HBV effect; however, the selection of HBV drug resistance mutations (DRMs) in individuals under HIV antiretroviral therapy (ART) has been reported but rarely in Nigeria. In this study the HBV/HDV prevalence and HBV DRMs in HIV-positive individuals in Southwestern Nigeria were assessed. Methods Plasma samples collected from 310 HIV-positive individuals including 295 ART-experienced and 15 ART-naïve persons attending the HIV clinic in three south-western states of Nigeria between June 2017 and August 2017 were analysed by ELISA for HBsAg and anti-HDV. The presence of HDV RNA and HBV DNA was analysed by (RT)-PCR followed by sequencing and phylogenetic analyses for genotyping. The HBV reverse transcription (RT) region was amplified and sequenced for the analysis of drug resistance mutations. Results Overall, 16.1% (n = 50/310) of the HIV-positive individuals were positive for HBsAg, most of which were ART-experienced (94.0%; n = 47/50). From the 50 HBsAg-positive samples, 72.0% (n = 36/50) were positive for HBV DNA and 16.0% (n = 8/50) had detectable HDV RNA while 5.6% (n = 2/36) of the HBV-DNA positive samples had anti-HDV total antibodies. Sequences were available for 31/36 of the HBV DNA-positive and 3/8 HDV RNA-positive samples. HBV DNA-positive samples were characterised as HBV genotype E infections exclusively, while HDV genotype 1 was detected in the HDV RNA-positive samples. HBV DRMs V173L, L180M, S202I and M204V/I, which are associated with lamivudine resistance, were detected in 32.2% (n = 10/31) of the HBV DNA-positive samples. Most of these mutations (90.0%; n = 9/10) were present in the ART-experienced cohort. Conclusions This study indicates that HBV/HDV coinfections are common in HIV-positive individuals under ART in Nigeria. Furthermore, a high proportion of HBV DRMs which potentially compromise future treatment options were detected, underscoring the need for HBV screening prior to starting ART. Further studies should be performed to monitor a possible increase in the spread of HDV among populations at risk of HIV and HBV infections.


2014 ◽  
Vol 12 (5) ◽  
pp. 309-316 ◽  
Author(s):  
Benjamin Chimukangara ◽  
Lovemore Gwanzura ◽  
Rebecca Mitchell ◽  
David Katzenstein ◽  
Collen Masimirembwa

2019 ◽  
Vol 11 (2) ◽  
pp. 75-83 ◽  
Author(s):  
A. A. Kirichenko ◽  
D. E. Kireev ◽  
A. E. Lopatukhin ◽  
A. V. Murzakova ◽  
I. A. Lapovok ◽  
...  

Aim: to analyze the prevalence, structure of drug resistance and drug resistance mutations in the protease and reverse transcriptase genes of HIV-1 among treatment naïve patients.Materials and methods. We analyzed protease and reverse transcriptase sequences from 1560 treatment naïve HIV-infected patients from all Federal Districts of the Russian Federation with the first positive immune blot during 1998–2017. Sequences were analyzed for the presence of drug resistance mutations and predicted drug resistance to antiretroviral drugs using two algorithms — Stanford HIVDR Database (HIVdb) and the 2009 SDRM list (CPR).Results. The prevalence of drug resistance mutations was 11,1%. More often the prevalence of drug resistance was found for non-nucleoside reverse transcriptase inhibitor drugs (rilpivirine, nevirapine, efavirenz). The prevalence of transmitted drug resistance associated with mutations from the SDRM list was 5,3%, which is classified by the WHO as a moderate level. However, it should be noted that since the large-scale use of antiretroviral drugs in the Russian Federation, there has been a trend towards a gradual increase in the level of the transmitted drug resistance, and in 2016 it has already reached 6,1%.Conclusion. The results demonstrate the need for regular surveillance of the prevalence of HIV drug resistance to antiretroviral drugs among treatment naïve patients in the Russian Federation.


Author(s):  
Tamara Bininashvili ◽  
Quentin Doperalski ◽  
Naiel Nassar

Discuss the different HIV drug resistance mutations and cross-resistance patterns in each class of HIV medication. In recent years, newer HIV medications have been introduced, and several studies have identified resistance mutations associated with the newer medications. • Previous exposure to antiretroviral (ARV) medications has a significant role in the development of drug resistance, especially in patients who are noncompliant with medications....


Sexual Health ◽  
2009 ◽  
Vol 6 (4) ◽  
pp. 305 ◽  
Author(s):  
Anna C. Hearps ◽  
Vicki Greengrass ◽  
Jennifer Hoy ◽  
Suzanne M. Crowe

Background: The integrase inhibitors (e.g. Raltegravir) are a new class of antiretroviral drugs that have recently become available for the treatment of patients with multi-drug resistant HIV-1 within Australia. The emergence of mutations that confer resistance to the integrase inhibitors has been observed in vivo; however, no commercial genotyping assay is currently available to screen for resistance to these drugs. Methods: The HIV-1 integrase gene was amplified from plasma-derived HIV-1 viral RNA via reverse transcription-polymerase chain reaction and genotype determined via population DNA sequencing. Drug resistance mutations and polymorphisms were detected using the Stanford University online HIV database. Assay sensitivity and reproducibility were determined using clinical and laboratory-derived samples. Results: Our in-house assay was capable of genotyping the integrase gene from all samples tested (n = 30) of HIV-1 subtypes B, C, D, F, CFR01_AE and CRF02_AG and can amplify the integrase region from plasma samples containing as few as 50 HIV RNA copies/mL. The assay is highly reproducible (average nucleotide concordance = 99.6%, n = 4) and is capable of detecting resistance-associated mutations. Conclusions:This assay is suitable for routine drug resistance screening of plasma samples from HIV-infected patients receiving integrase inhibitor antiretroviral drugs and also serves as a useful research tool.


2004 ◽  
Vol 78 (18) ◽  
pp. 10133-10148 ◽  
Author(s):  
Theresa K. Smit ◽  
Bruce J. Brew ◽  
Wallace Tourtellotte ◽  
Susan Morgello ◽  
Benjamin B. Gelman ◽  
...  

ABSTRACT AIDS dementia complex (ADC) in human immunodeficiency virus (HIV)-infected patients continues to be a problem in the era of highly active antiretroviral therapy (HAART). A better understanding of the drug resistance mutation patterns that emerge in the central nervous system (CNS) during HAART is of paramount importance as these differences in drug resistance mutations may explain underlying reasons for poor penetration of antiretroviral drugs into the CNS and suboptimal concentrations of the drugs that may reside in the brains of HIV-infected individuals during therapy. Thus, we provide a detailed analysis of HIV type 1 (HIV-1) protease and reverse transcriptase (RT) genes derived from different regions of the brains of 20 HIV-1-infected patients (5 without ADC, 2 with probable ADC, and 13 with various stages of ADC) on antiretroviral therapy. We show the compartmentalization and independent evolution of both primary and secondary drug resistance mutations to both RT and protease inhibitors in diverse regions of the CNS of HIV-infected patients, with and without dementia, on antiretroviral therapy. Our results suggest that the independent evolution of drug resistance mutations in diverse areas of the CNS may emerge as a consequence of incomplete suppression of HIV, probably related to suboptimal drug levels in the CNS and drug selection pressure. The emergence of resistant virus in the CNS may have considerable influence on the outcome of neurologic disease and also the reseeding of HIV in the systemic circulation upon failure of therapy.


Sign in / Sign up

Export Citation Format

Share Document