scholarly journals Discrimination of melanoma cell lines with Fourier Transform Infrared (FTIR) spectroscopy

2020 ◽  
Author(s):  
Bijay Ratna Shakya ◽  
Hanna-Riikka Teppo ◽  
Lassi Rieppo

AbstractAmong skin cancers, melanoma is the lethal form and the leading cause of death in humans. Melanoma begins in melanocytes and is curable at early stages. Thus, early detection and evaluation of its metastatic potential are crucial for effective clinical intervention. Fourier transform infrared (FTIR) spectroscopy has gained considerable attention due to its versatility in detecting biochemical and biological features present in the samples. Changes in these features are used to differentiate between samples at different stages of the disease. Previously, FTIR spectroscopy has been mostly used to distinguish between healthy and diseased conditions. With this study, we aim to discriminate between different melanoma cell lines based on their FTIR spectra. Formalin-fixed paraffin embedded samples from three melanoma cell lines (IPC-298, SK-MEL-30 and COLO-800) were used. Statistically significant differences were observed in the prominent spectral bands of three cell lines along with shifts in peak positions. Partial least square discriminant analysis (PLS-DA) models built for the classification of three cell lines showed accuracies of 96.38 %, 95.96 % and 99.7 %, for the differentiation of IPC-298, SK-MEL-30 and COLO-800, respectively. The results suggest that FTIR spectroscopy can be used to differentiate between genetically different melanoma cells and thus potentially characterize the metastatic potential of melanoma.

1995 ◽  
Vol 64 (3) ◽  
pp. 182-188 ◽  
Author(s):  
Eveliene Manten-Horst ◽  
Erik H. J. Danen ◽  
Lia Smit ◽  
Margriet Snoek ◽  
I. Le Caroline Poole ◽  
...  

Author(s):  
Winfried G. J. Degen ◽  
Marian A. J. Weterman ◽  
Jan J. M. van Groningen ◽  
Ine M. A. H. Cornelissen ◽  
Jolanda P. W. M. Lemmers ◽  
...  

1996 ◽  
Vol 109 (7) ◽  
pp. 1957-1964 ◽  
Author(s):  
M. Goebeler ◽  
D. Kaufmann ◽  
E.B. Brocker ◽  
C.E. Klein

Recent evidence indicates that CD44, a multifunctional adhesion receptor involved in cell-cell as well as in cell-matrix interactions, plays an important role in local progression and metastasis of malignant tumors. We have studied a set of human melanoma cell lines differing in their metastatic potential in nude mice as well as in normal melanocytes for changes in CD44 expression and function. All melanocytes and melanoma cell lines tested highly expressed the CD44 standard form (CD44s, 85 kDa) but variants at low levels only. With respect to one of the CD44-associated functions primarily involved in tumor progression we found that two highly metastatic tumor cell lines, MV3 and BLM, showed fivefold higher migration rates towards hyaluronate than melanomas with low metastatic potential and normal melanocytes. Moreover, the highly metastatic cell lines expressed four- to sixfold higher levels of the CD44 epitope involved in hyaluronic acid-binding (monoclonal antibody Hermes-1) than less aggressive melanomas and melanocytes. Hermes-1 efficiently blocked haptotaxis to hyaluronate, supporting the functional relevance of this epitope. In contrast, expression levels of other CD44s epitopes recognized by seven different anti-CD44 monoclonal antibodies were unchanged, suggesting that the migratory behaviour of the cells depends on the formation of the hyaluronate-binding Hermes-1 epitope rather than on the overall CD44s surface expression, which was virtually identical in all melanoma and melanocyte cell lines tested. Differences in the accessibility of the hyaluronate-binding epitope defined by Hermes-1 correlated with the phosphorylation state of CD44s, probably reflecting different activation states of the receptor. Furthermore, immunoprecipitation and pulse/chase studies revealed a three- to fivefold increase in CD44 synthesis in the highly aggressive melanoma cells as compared to the other cell lines and the melanocytes, indicating a reduction of CD44 half-life and up-regulation of turnover. Moreover, highly aggressive melanoma cell lines were found to shed significant amounts of CD44 from the cell surface and to secrete its ligand hyaluronic acid, which may refer to an “autocrine' mechanism mediating melanoma cell motility.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Nádia Reis ◽  
Adriana S. Franca ◽  
Leandro S. Oliveira

This paper proposed the joint use of Fourier Transform Infrared Attenuated Total Reflectance Spectroscopy (FTIR-ATR) and Partial Least Square (PLS) regression for the simultaneous quantification of four adulterants (coffee husks, spent coffee grounds, barley, and corn) in roasted and ground coffee. Roasted coffee samples were intentionally blended with the adulterants, at adulteration levels ranging from 0.5 to 66% w/w. A robust methodology was implemented in which the identification of outliers was carried out. High correlation coefficients (0.99 for both calibration and validation) coupled with low degrees of error (0.69% for calibration; 2.00% for validation) confirmed that FTIR-ATR can be a valuable analytical tool for quantification of adulteration in roasted and ground coffee. This method is simple, fast, and reliable for the proposed purpose.


Pathobiology ◽  
2004 ◽  
Vol 71 (5) ◽  
pp. 241-245 ◽  
Author(s):  
Jean-Claude Marshall ◽  
Amanda L. Caissie ◽  
Sonia A. Callejo ◽  
Emilia Antecka ◽  
Miguel N. Burnier Jr.

Sign in / Sign up

Export Citation Format

Share Document