scholarly journals Specific induction of double negative B cells during protective and pathogenic immune responses

2020 ◽  
Author(s):  
Christoph Ruschil ◽  
Gisela Gabernet ◽  
Gildas Lepennetier ◽  
Simon Heumos ◽  
Miriam Kaminski ◽  
...  

1AbstractDouble negative (DN) (CD19+CD20lowCD27−IgD−) B cells are expanded in patients with autoimmune and infectious diseases; however their role in the humoral immune response remains unclear. Using systematic flow cytometric analyses of peripheral blood B cell subsets, we observed an inflated DN B cell population in patients with variety of active inflammatory conditions: myasthenia gravis, Guillain-Barré syndrome, neuromyelitis optica spectrum disorder, meningitis/encephalitis, and rheumatic disorders. Furthermore, we were able to induce DN B cells in healthy subjects following vaccination against influenza and tick borne encephalitis virus. Transcriptome analysis revealed a gene expression profile in DN B cells that clustered with naïve B cells, memory B cells, and plasmablasts. Immunoglobulin VH transcriptome sequencing and analysis of recombinant antibodies revealed clonal expansion of DN B cells, that were targeted against the vaccine antigen. Our study suggests that DN B cells are expanded in multiple inflammatory neurologic diseases and represent an inducible B cell population that responds to antigenic stimulation, possibly through an extra-follicular maturation pathway.

2020 ◽  
Vol 11 ◽  
Author(s):  
Christoph Ruschil ◽  
Gisela Gabernet ◽  
Gildas Lepennetier ◽  
Simon Heumos ◽  
Miriam Kaminski ◽  
...  

Double negative (DN) (CD19+CD20lowCD27-IgD-) B cells are expanded in patients with autoimmune and infectious diseases; however their role in the humoral immune response remains unclear. Using systematic flow cytometric analyses of peripheral blood B cell subsets, we observed an inflated DN B cell population in patients with variety of active inflammatory conditions: myasthenia gravis, Guillain-Barré syndrome, neuromyelitis optica spectrum disorder, meningitis/encephalitis, and rheumatic disorders. Furthermore, we were able to induce DN B cells in healthy subjects following vaccination against influenza and tick borne encephalitis virus. Transcriptome analysis revealed a gene expression profile in DN B cells that clustered with naïve B cells, memory B cells, and plasmablasts. Immunoglobulin VH transcriptome sequencing and analysis of recombinant antibodies revealed clonal expansion of DN B cells that were targeted against the vaccine antigen. Our study suggests that DN B cells are expanded in multiple inflammatory neurologic diseases and represent an inducible B cell population that responds to antigenic stimulation, possibly through an extra-follicular maturation pathway.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3393-3393
Author(s):  
Jonathan Carmichael ◽  
Clive R Carter ◽  
Christopher Parrish ◽  
Charlotte Kallmeyer ◽  
Sylvia Feyler ◽  
...  

Abstract Multiple myeloma (MM) is characterized by an increased risk of infection due to the immunosuppressive effect of the disease and conjointly of therapy. Furthermore, there is impaired responses to vaccination to counter the infection risk. The factors that underpin defective B-cell homeostasis and effective humoral immunity are not clear, nor are the extent of the defects. Also, the level of impaired humoral immunity in MGUS is not fully understood. The aim of this study was to delineate the circulating B-cell populations and recall antibody responses in patients with MGUS & MM, compared to age-matched controls, correlating with the responsiveness to vaccinations, incidence of infective complications and concomitant therapy. We performed comprehensive B-cell immunophenotyping by multi-parameter flow cytometry of peripheral blood samples from patients with MGUS (n=16), asymptomatic MM (n=18) and MM (n=108) with a median age of 63 years (range 38-94) comparing them to age-matched controls (n=9). B-cell subsets included naïve (CD19+CD27-), memory (CD19+CD27+; non-switch CD19+IgD+CD27+, switch CD19+IgD-CD27+), transitional (CD19+CD27-CD24hiCD38hi) & regulatory (CD19+CD27+CD24hi) B-cells. Serum uninvolved total IgG, IgM & IgA levels along with vaccine-specific antibody responses were analysed. There is a progressive decrease in the uninvolved immunoglobulin classes with significant reduction in total IgA (p=0.006) and IgM levels (p=0.007) in aMM/MM compared to MGUS & control (Figure 1). When anti-pneumococcal antibodies were measured, only 30% of aMM/MM patients had adequate protective levels compared to 79% of age-matched controls, with 40% of aMM/MM patients with inadequate levels experiencing recurrent respiratory tract infections compared to 25% of aMM/MM patients with adequate proactive antibodies. Patients with MGUS, aMM and MM have lower total B-cell numbers compared to controls (1-way ANOVA p=0.004; Figure 1). The reduction in B-cell numbers were primarily the consequence of reduced memory B-cells (percentage and absolute 1-way ANOVA p<0.0001), noted in both MGUS and aMM/MM but a progressive reduction with increasing disease activity (MGUS>aMM>MM). Furthermore, a correlation with total IgG levels & memory B-cell numbers is evident (r2=-0.053) & progressive reduction in memory B-cell numbers is seen with advancing cycles of therapy. The ratio of switch:non-switch memory B-cells is unaltered (control 1.05, MGUS 0.53, aMM 1.41 & MM 1.49; 1-way ANOVA p=ns). Conversely, there is a compensatory increase in the percentage of transitional B-cells when increasing disease stage is compared to controls (control 7.38% (95%ci 4.9,9.9) vs MGUS 14.0% (95%ci 7.4, 20.7) vs aMM 14.95% (95%ci 8, 21.9); 1-way ANOVA p<0.001) but a reduction is noted in MM (5.82%, 95%ci 4.5,7.2; p<0.0001), primarily being driven by sequential lines of therapy. As a consequence, the ratio of Memory:transitional B-cells is significantly reduced in aMM/MM compared to MGUS & controls (control 10.35, MGUS 20.46, aMM 7.74 & MM 4.57; 1-way ANOVA p=0.006), associated with increasing incidence of bacterial infections. A non-significant correlation is seen between transitional B-cells and total uninvolved immunoglobulin levels and with recall responses to vaccinations. There is a progressive decrease in the CD19+CD27+CD24hi B-cell subset between control and plasma cell dyscrasias (control 20.4% (95%ci 15.5,25.2), MGUS 14.0% (95%ci 7.4, 20.7), aMM 14.95% (95%ci 8, 21.9) & MM 5.82%, 95%ci 4.5,7.2; p<0.0001), primarily being driven by sequential lines of therapy and associated with increased incidence of infection. This study illustrates that patients with myeloma demonstrate reduced total circulating B-cells primarily as a consequence of reduced memory B-cells, associated with reduced immunoglobulin and recall antibody responses. This is associated with increased incidence of bacterial infections and is worsened by sequential exposure to lymphodepleting therapies. Of particular importance is the identified aberration in B-cell subsets seen in MGUS compared with age-matched control, indicative of humoral immune dysregulation highlighting that MGUS may not be an immunologically inert disorder. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alexander Stewart ◽  
Joseph Chi-Fung Ng ◽  
Gillian Wallis ◽  
Vasiliki Tsioligka ◽  
Franca Fraternali ◽  
...  

Separation of B cells into different subsets has been useful to understand their different functions in various immune scenarios. In some instances, the subsets defined by phenotypic FACS separation are relatively homogeneous and so establishing the functions associated with them is straightforward. Other subsets, such as the “Double negative” (DN, CD19+CD27-IgD-) population, are more complex with reports of differing functionality which could indicate a heterogeneous population. Recent advances in single-cell techniques enable an alternative route to characterize cells based on their transcriptome. To maximize immunological insight, we need to match prior data from phenotype-based studies with the finer granularity of the single-cell transcriptomic signatures. We also need to be able to define meaningful B cell subsets from single cell analyses performed on PBMCs, where the relative paucity of a B cell signature means that defining B cell subsets within the whole is challenging. Here we provide a reference single-cell dataset based on phenotypically sorted B cells and an unbiased procedure to better classify functional B cell subsets in the peripheral blood, particularly useful in establishing a baseline cellular landscape and in extracting significant changes with respect to this baseline from single-cell datasets. We find 10 different clusters of B cells and applied a novel, geometry-inspired, method to RNA velocity estimates in order to evaluate the dynamic transitions between B cell clusters. This indicated the presence of two main developmental branches of memory B cells. A T-independent branch that involves IgM memory cells and two DN subpopulations, culminating in a population thought to be associated with Age related B cells and the extrafollicular response. The other, T-dependent, branch involves a third DN cluster which appears to be a precursor of classical memory cells. In addition, we identify a novel DN4 population, which is IgE rich and closely linked to the classical/precursor memory branch suggesting an IgE specific T-dependent cell population.


2020 ◽  
Author(s):  
Alexander Stewart ◽  
Joseph Ng ◽  
Gillian Wallis ◽  
Vasiliki Tsioligka ◽  
Franca Fraternali ◽  
...  

AbstractSeparation of B cells into different subsets has been useful to understand their different functions in various immune scenarios. In some instances, the subsets defined by phenotypic FACS separation are relatively homogeneous and so establishing the functions associated with them is straightforward. Other subsets, such as the “Double negative” (DN, CD19+CD27-IgD-) population, are more complex with reports of differing functionality which could indicate a heterogeneous population. Recent advances in single-cell techniques enable an alternative route to characterise cells based on their transcriptome. To maximise immunological insight, we need to match prior data from phenotype-based studies with the finer granularity of the single-cell transcriptomic signatures. We also need to be able to define meaningful B cell subsets from single cell analyses performed on PBMCs, where the relative paucity of a B cell signature means that defining B cell subsets within the whole is challenging. Here we provide a reference single-cell dataset based on phenotypically sorted B cells and an unbiased procedure to better classify functional B cell subsets in the peripheral blood, particularly useful in establishing a baseline cellular landscape and in extracting significant changes with respect to this baseline from single-cell datasets. We find 10 different clusters of B cells and applied a novel, geometry-inspired, method to RNA velocity estimates in order to evaluate the dynamical transitions between B cell clusters. This indicated the presence of two main developmental branches of memory B cells. One involves IgM memory cells and two DN subpopulations, culminating in a population thought to be associated with Age related B cells and the extrafollicular response. The other branch involves a third DN cluster which appears to be a precursor of classical memory cells. In addition, we identify a novel DN4 population, which is IgE rich and on its own developmental branch but with links to the classical memory branch.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1425-1425
Author(s):  
Alexander Shimabukuro-Vornhagen ◽  
María García Márquez ◽  
Rieke Fischer ◽  
Kerstin Wennhold ◽  
Juliane Iltgen ◽  
...  

Abstract In recent years we have gained an increased understanding of the complexity of B cell biology and function. It has become increasingly recognized that apart from antibody production B cells exert many more function. B cells serve as antigen-presenting cells (APC), they contribute to immunoregulation and represent an important source of cytokines and chemokines. A deeper understanding of the role of B cells in the pathophysiology of human diseases has been hampered by the lack of well-defined functional B cell subsets. We therefore aimed to identify novel human B cell subsets which could serve as biomarkers or targets of therapeutic intervention. Using a transcriptomic approach combined with flowcytometric immune assessment of healthy human subjects and patients we were able to identify several functional B cell subpopulations with relevance to human disease. We were able to define a CD21low CD86pos human B cell subset with strong antigen-presenting capacity which gradually develops from conventional resting B cells under the continuous stimulation via CD40. These cells were phenotypically and functionally distinct from CD21low CD86neg B lymphocytes, which represent anergic B cells. Using calcium flux assays and phospho-specific flow cytometry we were able to show that the CD21low B cell subsets displayed distinct signaling states. Both CD21low B cell subpopulations had an impaired response to B cell receptor stimulation. However, CD21low CD86pos B cells had higher basal calcium levels and basal phosphorylation of BCR-associated signaling molecules such as Syk and Erk. Contrary to CD21low CD86neg B cells, which demonstrated poor antigen-presenting capacity, CD21low CD86pos B cells were potent immunostimulatory antigen-presenting cells. CD21low CD86pos B cells were increased in acute inflammation and autoimmune diseases such as rheumatoid arthritis. CD21low CD86neg B cells, on the other hand, were increased in chronic inflammatory conditions such as chronic HIV infection. The balance between the CD21low B cell subsets varied with the functional state of the B cell compartment in inflammatory conditions and could be used to classify the functional state of the B cell compartment. In summary, we have identified several novel human B cell subsets with distinct functions. Given the large number of B cell-directed drugs which are in clinical development or already approved it seems likely that an increased knowledge of the human B cell subsets will not only provide important insights into the pathology of immune-mediated diseases but will also result in novel therapeutic strategies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 565-565
Author(s):  
Davide Bagnara ◽  
Margherita Squillario ◽  
David Kipling ◽  
Thierry Mora ◽  
Aleksandra Walczak ◽  
...  

Abstract In humans, whether B cells with the IgM+IgD+CD27+ phenotype represent an independent lineage involved in T-independent responses, similar to mouse marginal zone B cells, or whether they are part of the germinal center-derived memory B-cell pool generated during responses to T-dependent antigens, is still a debated issue. To address this question, we performed high-throughput Ig sequencing of B-cell subsets from paired blood and spleen samples and analyzed the clonal relationships between them. We isolated and analyzed 3 different B cell subsets based on CD27 and IgD staining from both blood and spleen: IgD+CD27+ (MZ) - amplified with Cmu primers IgD-CD27+ (switched and IgM-only) with Cmu, Cgamma and Calpha primers IgD-CD27- (CD27- memory or double-negative DN) with the same three primers We obtained 95729 unique sequences that clustered in 49199 different clones: 1125 clones were shared between blood and spleen of the same B-cell subset, and 1681 clones were shared between different subsets, allowing us to trace their relationships. We analyzed these clones that share sequences from different subsets/tissues for their mutation frequency distribution, CDR3-length, and VH/JH family usage, and compared these different characteristics with the bulk of sequences from their respective subset of origin. The analysis of clones shared between blood and spleen for switched IgG/IgA and for MZ subsets suggests different recirculation dynamics. For switched cells, the blood appears to be a mixture of splenic and other lymphoid tissues B cells. For MZ B cells in contrast, the blood appear to be only composed of a subgroup of the splenic repertoire, in agreement with the observation that marginal zone B cells recirculate and are mainly generated in the spleen. Clonal relationships between the IgM clones (originating from the MZ, IgM-only and double negative compartments) show that the clones involved display the characteristics of IgM-only B cells whatever their subset of origin, even in the case of the paired MZ/double-negative sequences that were not supposed to include IgM-only sequences. We therefore conclude that the clones shared between the various IgM subsets do not represent b between them, but rather correspond to a heterogeneous phenotype of the IgM-only population that concerns both IgD and CD27 expression, leading to a partial overlap with the MZ and double-negative gates. Clones shared between the MZ and the switched IgG and IgA compartment also show, for their IgM part, the mutation and repertoire characteristics of IgM-only cells and not of MZ B cells, reinforcing the conclusion that IgM-only are true memory B cells, and constitute the only subset showing clonal relationships with switched memory B cells. In summary, we report that MZ B cells have different recirculation characteristics and do not show real clonal relationships with IgM-only and switched memory B cells, in agreement with the notion that they represent a distinct differentiation pathway. In contrast, the only precursor-product relationship between IgM memory and switched B cells appear to concern a B cell subset that has been described as "IgM-only", but appears to have a more heterogeneous expression of IgD than previously reported and therefore contribute to 3-15% of the MZ compartment. Searching for markers that would permit to discriminate between marginal zone and germinal center-derived IgM memory B cells is obviously required to further delineate their respective function. Disclosures No relevant conflicts of interest to declare.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1966
Author(s):  
Alexey Golovkin ◽  
Olga Kalinina ◽  
Vadim Bezrukikh ◽  
Arthur Aquino ◽  
Ekaterina Zaikova ◽  
...  

Background: The immunological changes associated with COVID-19 are largely unknown. Methods: Patients with COVID-19 showing moderate (n = 18; SpO2 > 93%, respiratory rate > 22 per minute, CRP > 10 mg/L) and severe (n = 23; SpO2 < 93%, respiratory rate >30 per minute, PaO2/FiO2 ≤ 300 mmHg, permanent oxygen therapy, qSOFA > 2) infection, and 37 healthy donors (HD) were enrolled. Circulating T- and B-cell subsets were analyzed by flow cytometry. Results: CD4+Th cells were skewed toward Th2-like phenotypes within CD45RA+CD62L− (CM) and CD45RA–CD62L− (EM) cells in patients with severe COVID-19, while CM CCR6+ Th17-like cells were decreased if compared with HD. Within CM Th17-like cells “classical” Th17-like cells were increased and Th17.1-like cells were decreased in severe COVID-19 cases. Circulating CM follicular Th-like (Tfh) cells were decreased in all COVID-19 patients, and Tfh17-like cells represented the most predominant subset in severe COVID-19 cases. Both groups of patients showed increased levels of IgD-CD38++ B cells, while the levels of IgD+CD38− and IgD–CD38− were decreased. The frequency of IgD+CD27+ and IgD–CD27+ B cells was significantly reduced in severe COVID-19 cases. Conclusions: We showed an imbalance within almost all circulating memory Th subsets during acute COVID-19 and showed that altered Tfh polarization led to a dysregulated humoral immune response.


Blood ◽  
2011 ◽  
Vol 117 (14) ◽  
pp. 3780-3792 ◽  
Author(s):  
Gleb Turchinovich ◽  
Thi Thanh Vu ◽  
Friederike Frommer ◽  
Jan Kranich ◽  
Sonja Schmid ◽  
...  

Abstract Splenic marginal zone (MZ) B cells are a lineage distinct from follicular and peritoneal B1 B cells. They are located next to the marginal sinus where blood is released. Here they pick up antigens and shuttle the load onto follicular dendritic cells inside the follicle. On activation, MZ B cells rapidly differentiate into plasmablasts secreting antibodies, thereby mediating humoral immune responses against blood-borne type 2 T-independent antigens. As Krüppel-like factors are implicated in cell differentiation/function in various tissues, we studied the function of basic Krüppel-like factor (BKLF/KLF3) in B cells. Whereas B-cell development in the bone marrow of KLF3-transgenic mice was unaffected, MZ B-cell numbers in spleen were increased considerably. As revealed in chimeric mice, this occurred cell autonomously, increasing both MZ and peritoneal B1 B-cell subsets. Comparing KLF3-transgenic and nontransgenic follicular B cells by RNA-microarray revealed that KLF3 regulates a subset of genes that was similarly up-regulated/down-regulated on normal MZ B-cell differentiation. Indeed, KLF3 expression overcame the lack of MZ B cells caused by different genetic alterations, such as CD19-deficiency or blockade of B-cell activating factor-receptor signaling, indicating that KLF3 may complement alternative nuclear factor-κB signaling. Thus, KLF3 is a driving force toward MZ B-cell maturation.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2055-2055 ◽  
Author(s):  
Prasanthi V. Tata ◽  
Benjamin G. Vincent ◽  
Pei-Fen Kuan ◽  
Corbin Jones ◽  
Jonathan Serody ◽  
...  

Abstract Patients with chronic graft versus host disease (cGVHD) have persistently altered B cell homeostasis and loss of B cell tolerance, even years after allogeneic hematopoietic stem cell transplantation (HSCT). Chronic GVHD patients have been shown to have a diverse group of autoantibodies. In cGVHD patients, antigen-experienced CD27+ B cells, unlike CD27- B cells, are capable of constitutive IgG secretion without the need for ex vivo stimulation [Sarantopoulos et al., Blood. 2009]. We previously showed that potentially allo- or auto-reactive B cells in human cGVHD signal via BAFF-associated pathways [Allen et al., Blood. 2012]. B cell receptor (BCR) repertoire composition in cGVHD B cell subsets remains unknown. We hypothesized that potentially pathologic CD27+ B cell subsets could be identified in cGVHD patients by sequencing of the immunoglobulin heavy chain (IGH). In our study, high-throughput sequencing of the IGH was performed after preparation of single molecule real time (SMRT) B-cell amplicon libraries from RT-PCR products per Pacific Biosciences 500bp protocol, using framework region 2 (FR2) IGH variable (V) gene family primers and a common IGH Joining (J) gene primer [Boyd et al., Science Translational Medicine. 2009]. Sufficient numbers of purified B cell subsets, only available from large volume cGVHD leukapheresis samples, were obtained from three cGVHD patients and three healthy donors (HDs). In each cGVHD patient and in HDs, we examined the following CD27+ and CD27- B cell populations: naïve/transitional (CD27- IgD+ CD38+), double negative (CD27- IgD- CD38+), CD27+ IgD+ memory (CD27+ IgD+ CD38+) and CD27+ IgD- memory (CD27+ IgD- CD38+). The IGH complementarity-determining region 3 (CDR3) is crucial for BCR antigen-specificity, and CDR3 characteristics have been previously shown to associate with autoreactivity [Wardemann et al., Science. 2003]. Thus, we assessed the CDR3 characteristics (length, charge, amino acid composition, hydrophobicity) in each B cell subset in HDs and cGVHD patients. We found that cGVHD CD27+ IgD+ B cells had overall CDR3 amino acid charge and length similar to naïve/transitional B cells. Since the CDR3 sequence is a result of V and J segment joining and may associate with capacity for autoreactivity, we also assessed relative V and J gene family usage. Gene usage analyses showed that the IGHV3 gene contributes to the majority of IGHV in all subsets of both cGVHD patients and HD groups, validating a previous report of three healthy individuals [Wu et al., Blood. 2010]. Notably, we found a 10-fold increase in frequency of IGHV7 usage in cGVHD patients compared to HD B cell subsets (1.13% vs. 0.09 in naïve/ transitional, 1.1% vs. 0.06 in double negative, 1.05 vs. 0.8 in CD27+ IgD+ memory and 0.8 vs. 0.06 in CD27+ IgD- memory). Additionally, the previously well-described autoreactive gene IGHV4-34 was more frequent in cGVHD patients compared to HD in all B cell subsets except in double negative cells. Interestingly, IGHV4-34 usage was particularly frequent in the CD27+ IgD+ cells, with a mean value of 33.1% compared to 23.3% in healthy donors. Consistent with autoreactivity, plasma IgG from these cGVHD patients had positive HEp-2 cell staining. Of the four B cell subsets examined, the CD27+ IgD+ memory in cGVHD had other distinct IGH characteristics. Additionally, IgD+ CD27+ memory B cells from cGVHD patients displayed a relative increase in IGHJ6 usage, with 37.1% compared to the 26.7% found in HD. Higher usage of tyrosine in CD27+ IgD+ population corroborated this finding. Taken together, the IgD+ CD27+ B cell subset possessed an IGH repertoire with three features unique to cGVHD: 1) similarity to the naïve/transitional cells in the CDR3 length and total charge, 2) increased IGHJ6 usage, and 3) increased IGHV4-34 gene usage. We previously demonstrated increased cell size in CD27+ B cells, in particular in the pre-Germinal Center (GC) subset that was included in the IgD+ CD27+ gate in the current analysis. Of note, pre-GC cells were previously found to uniquely circulate in cGVHD and express high levels of the BAFF receptors TACI and BCMA [Sarantopoulos et al., Blood. 2009], corroborating the potential autoreactive capacity of this cell population. Thus, our current data suggest that IgD+CD27+ B cells in cGVHD patients display distinctly autoreactive features, and are a potentially pathologic B-cell subset in cGVHD. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Yamei Li ◽  
Yunying Shi ◽  
Tao Lin ◽  
Xianding Wang ◽  
Lin Yan ◽  
...  

Abstract Background and Aims With the application of B-cell-depleting agent rituximab, plasmapheresis and powerful immunosuppression, ABO-incompatible kidney transplant recipients (ABOi-KT) have successfully overcome the ABO antibody barrier. As an important immune cell population, B cells are not only involved in antibody-mediated rejection, but also have been reported to have different immunoregulatory effects due to the existence of distinct B cell subsets. Therefore, comprehensively understanding the reconstitution of B-cell subsets in ABOi-KTRs is crucial to know the immune status that may be related to the subsequent complications. Method Fresh whole blood were collected from 22 ABOi-KTRs and 22 ABO-compatible recipients (ABOc-KTRs) at 0, 1week, 2 weeks ,1month, 3months, and 6 months post-transplantation between October 2018 and May 2019. In addition, pre-desensitization samples were also collected from ABOi-KTRs. B cell subsets including total, naïve, memory, plasma, plasma blast and regulatory B cells were determined by flow cytometry. Results The percentages of B cells in ABOi group remained extremely low and significantly lower than ABOc group through the first 6 months after rituximab treatment (Fig. A). Similar trends were observed in total memory and switched memory B cells whose frequencies increased within first 2 weeks, then decreased thereafter. Meanwhile, the significant differences between ABOi and ABOc groups disappeared at 6 months (Fig. B-D). In addition, plasma and plasma blast B cells increased 2 weeks after transplantation and were significantly higher in ABOi group compared to ABOc group (Fig. E, G), while Naïve B cells started to elevate 1 month after transplantation in ABOi-KTRs and significantly higher proportions were found in ABOc group through the entire 6 months (Fig. F). No obvious difference was observed between ABOi and ABOc groups regarding unswitched memory and regulatory B cell percentages (Fig. C, H). Conclusion Our preliminary results indicated that B-cell depletion therapy applied in ABOi-KTRs not only significantly reduced the number of B cells, but also changed the composition of B cell subsets in the remaining B cell population. Whether such alteration would be clinical significance requires further follow-up.


Sign in / Sign up

Export Citation Format

Share Document