scholarly journals Sensory feedback-dependent coding of arm position in local field potentials of the posterior parietal cortex

2020 ◽  
Author(s):  
Paul VanGilder ◽  
Ying Shi ◽  
Gregory Apker ◽  
Christopher A. Buneo

Although multisensory integration is crucial for sensorimotor function, it is still unclear how sensory cues provided by the visual and proprioceptive systems are combined in the brain during motor behaviors. Here we characterized the effects of multisensory interactions on local field potential (LFP) activity obtained from the superior parietal lobule (SPL) as non-human primates performed an arm position maintenance task with either unimodal (proprioceptive) or bimodal (visual-proprioceptive) sensory feedback. Based on previous analyses of spiking activity, and observations that LFP and spikes are highly correlated in some cortical areas, we hypothesized that evoked LFP responses would be tuned to arm location but would be suppressed on bimodal trials, relative to unimodal trials. We also expected to see a substantial number of recording sites with enhanced beta band spectral power for only one set of feedback conditions, as was previously observed for spiking activity. We found that evoked activity and beta band power were tuned to arm location at many individual sites, though this tuning often differed between unimodal and bimodal trials. At the population level, both evoked and beta band activity were consistent with feedback-dependent tuning to arm location, while beta band activity also showed evidence of suppression on bimodal trials. The results suggest that multisensory interactions can alter the tuning and gain of arm position-related LFP activity in the SPL and that this activity can be used to decode the arm location under varying sensory conditions.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul VanGilder ◽  
Ying Shi ◽  
Gregory Apker ◽  
Christopher A. Buneo

AbstractAlthough multisensory integration is crucial for sensorimotor function, it is unclear how visual and proprioceptive sensory cues are combined in the brain during motor behaviors. Here we characterized the effects of multisensory interactions on local field potential (LFP) activity obtained from the superior parietal lobule (SPL) as non-human primates performed a reaching task with either unimodal (proprioceptive) or bimodal (visual-proprioceptive) sensory feedback. Based on previous analyses of spiking activity, we hypothesized that evoked LFP responses would be tuned to arm location but would be suppressed on bimodal trials, relative to unimodal trials. We also expected to see a substantial number of recording sites with enhanced beta band spectral power for only one set of feedback conditions (e.g. unimodal or bimodal), as was previously observed for spiking activity. We found that evoked activity and beta band power were tuned to arm location at many individual sites, though this tuning often differed between unimodal and bimodal trials. Across the population, both evoked and beta activity were consistent with feedback-dependent tuning to arm location, while beta band activity also showed evidence of response suppression on bimodal trials. The results suggest that multisensory interactions can alter the tuning and gain of arm position-related LFP activity in the SPL.


2018 ◽  
Author(s):  
Francisco Garcca-Rosales ◽  
Lisa M. Martin ◽  
M. Jerome Beetz ◽  
Yuranny Cabral-Calderrn ◽  
Manfred KKssl ◽  
...  

Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Ilknur Telkes ◽  
Jennifer Durphy ◽  
Octavian Adam ◽  
Nataly Raviv ◽  
Julie G Pilitsis

Abstract INTRODUCTION One of the biggest limitations of deep brain stimulation (DBS) therapy is the stimulation induced side effects due to restricted size of functional areas in subthalamic nucleus (STN) and the proximity of structures. The segmented DBS lead technology aims to address this problem by delivering more selected, focal modulation via smaller, directional contacts. However, the DBS programming becomes more complex and time-consuming for clinical feasibility. Here in this pilot study, we investigated the spectral power distribution of directional local field potentials (LFPs) in STN and their relationship to motor symptoms of Parkinson disease (PD). METHODS We recorded 8-channel intraoperative LFPs in 9 PD patients at resting and during stimulation OFF. Power-frequency spectra were computed for all individual contacts and then grouped according to which anatomical directions they are facing. Beta (13-20 Hz/20-35 Hz) and alpha (7-12 Hz) band powers were calculated and their correlation to preoperative UPDRS-3 scores (51.7 ± 21.9 d before the DBS surgery) and the clinical programming were evaluated. RESULTS The average depth-frequency maps demonstrated different spectral dynamics across anterior, medial, and lateral directions. Patients with severe tremor compared to nontremor subjects showed higher beta power in anterior and lateral directions. Beta band power were positively correlated with the tremor severity and significantly correlated with clinical stimulation amplitude (mA) in anterior direction (P < .05). Correlation analysis between beta power and the other UPDRS-3 items such as bradykinesia/rigidity or postural instability and gait disturbance did not show clear trends towards a direction. CONCLUSION Given that testing all possible combinations of contact pairs and stimulation parameters is not feasible in a single clinic visit, spatio-spectral dynamics obtained from intraoperative recordings of LFPs might be used as an initial marker to select optimal contact (s). LFPs carry pathological signatures of PD and they might provide a functional use to predict optimal stimulation parameters in future. These features as well as higher frequency and cross-coupling dynamics of LFPs need to be studied in detail with larger subject populations.


2016 ◽  
Vol 115 (6) ◽  
pp. 3140-3145 ◽  
Author(s):  
Petr Klimes ◽  
Juliano J. Duque ◽  
Ben Brinkmann ◽  
Jamie Van Gompel ◽  
Matt Stead ◽  
...  

The function and connectivity of human brain is disrupted in epilepsy. We previously reported that the region of epileptic brain generating focal seizures, i.e., the seizure onset zone (SOZ), is functionally isolated from surrounding brain regions in focal neocortical epilepsy. The modulatory effect of behavioral state on the spatial and spectral scales over which the reduced functional connectivity occurs, however, is unclear. Here we use simultaneous sleep staging from scalp EEG with intracranial EEG recordings from medial temporal lobe to investigate how behavioral state modulates the spatial and spectral scales of local field potential synchrony in focal epileptic hippocampus. The local field spectral power and linear correlation between adjacent electrodes provide measures of neuronal population synchrony at different spatial scales, ∼1 and 10 mm, respectively. Our results show increased connectivity inside the SOZ and low connectivity between electrodes in SOZ and outside the SOZ. During slow-wave sleep, we observed decreased connectivity for ripple and fast ripple frequency bands within the SOZ at the 10 mm spatial scale, while the local synchrony remained high at the 1 mm spatial scale. Further study of these phenomena may prove useful for SOZ localization and help understand seizure generation, and the functional deficits seen in epileptic eloquent cortex.


2019 ◽  
Author(s):  
David T. Bundy ◽  
David J Guggenmos ◽  
Maxwell D Murphy ◽  
Randolph J. Nudo

AbstractFollowing injury to motor cortex, reorganization occurs throughout spared brain regions and is thought to underlie motor recovery. Unfortunately, the standard neurophysiological and neuroanatomical measures of post-lesion plasticity are only indirectly related to observed changes in motor execution. While substantial task-related neural activity has been observed during motor tasks in rodent primary motor cortex and premotor cortex, the long-term stability of these responses in healthy rats is uncertain, limiting the interpretability of longitudinal changes in the specific patterns of neural activity during motor recovery following injury. This study examined the stability of task-related neural activity associated with execution of reaching movements in healthy rodents. Rats were trained to perform a novel reaching task combining a ‘gross’ lever press and a ‘fine’ pellet retrieval. In each animal, two chronic microelectrode arrays were implanted in motor cortex spanning the caudal forelimb area (rodent primary motor cortex) and the rostral forelimb area (rodent premotor cortex). We recorded multiunit spiking and local field potential activity from 10 days to 7-10 weeks post-implantation to characterize the patterns of neural activity observed during each task component and analyzed the consistency of channel-specific task-related neural activity. Task-related changes in neural activity were observed on the majority of channels. While the task-related changes in multi-unit spiking and local field potential spectral power were consistent over several weeks, spectral power changes were more stable, despite the trade-off of decreased spatial and temporal resolution. These results show that rodent primary and premotor cortex are both involved in reaching movements with stable patterns of task-related activity across time, establishing the relevance of the rodent for future studies designed to examine changes in task-related neural activity during recovery from focal cortical lesions.


2021 ◽  
Author(s):  
Hiroshi Tamura

AbstractNeuron activity in the sensory cortices mainly depends on feedforward thalamic inputs. High-frequency activity of a thalamic input can be temporally integrated by a neuron in the sensory cortex and is likely to induce larger depolarization. However, feedforward inhibition (FFI) and depression of excitatory synaptic transmission in thalamocortical pathways attenuate depolarization induced by the latter part of high-frequency spiking activity and the temporal summation may not be effective. The spiking activity of a thalamic neuron in a specific temporal pattern may circumvent FFI and depression of excitatory synapses. The present study determined the relationship between the temporal pattern of spiking activity of a single thalamic neuron and the degree of cortical activation as well as that between the firing rate of spiking activity of a single thalamic neuron and the degree of cortical activation. Spiking activity of a thalamic neuron was recorded extracellularly from the lateral geniculate nucleus (LGN) in male Long-Evans rats. Degree of cortical activation was assessed by simultaneous recording of local field potential (LFP) from the visual cortex. A specific temporal pattern appearing in three consecutive spikes of an LGN neuron induced larger cortical LFP modulation than high-frequency spiking activity during a short period. These findings indicate that spiking activity of thalamic inputs is integrated by a synaptic mechanism sensitive to an input temporal pattern.Significance StatementSensory cortical activity depends on thalamic inputs. Despite the importance of thalamocortical transmission, how spiking activity of thalamic inputs is integrated by cortical neurons remains unclear. Feedforward inhibition and synaptic depression of excitatory transmission may not allow simple temporal summation of membrane potential induced by consecutive spiking activity of a thalamic neuron. A specific temporal pattern appearing in three consecutive spikes of a thalamic neuron induced larger cortical local field potential modulation than high-frequency spiking activity during a short period. The findings indicate the importance of the temporal pattern of spiking activity of a single thalamic neuron on cortical activation.


Sign in / Sign up

Export Citation Format

Share Document