scholarly journals Discovery of a Novel Inhibitor of Coronavirus 3CL Protease as a Clinical Candidate for the Potential Treatment of COVID-19

Author(s):  
Britton Boras ◽  
Rhys M. Jones ◽  
Brandon J. Anson ◽  
Dan Arenson ◽  
Lisa Aschenbrenner ◽  
...  

AbstractCOVID-19 caused by the SARS-CoV-2 virus has become a global pandemic. 3CL protease is a virally encoded protein that is essential to the viral life cycle across a broad spectrum of coronaviruses with no close human analogs. The designed phosphate prodrug PF-07304814 is metabolized to PF-00835321 which is a potent inhibitor in vitro of the coronavirus family 3CL pro, with selectivity over human host protease targets. Furthermore, PF-00835231 exhibits potent in vitro antiviral activity against SARS-CoV-2 as a single agent and it is additive/synergistic in combination with remdesivir. We present the ADME, safety, and in vitro antiviral activity data to warrant clinical evaluation.One Sentence SummaryThe phosphate prodrug PF-07304814 is disclosed as an investigational novel intravenous small molecule 3CL protease inhibitor for COVID-19.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Britton Boras ◽  
Rhys M. Jones ◽  
Brandon J. Anson ◽  
Dan Arenson ◽  
Lisa Aschenbrenner ◽  
...  

AbstractCOVID-19 caused by the SARS-CoV-2 virus has become a global pandemic. 3CL protease is a virally encoded protein that is essential across a broad spectrum of coronaviruses with no close human analogs. PF-00835231, a 3CL protease inhibitor, has exhibited potent in vitro antiviral activity against SARS-CoV-2 as a single agent. Here we report, the design and characterization of a phosphate prodrug PF-07304814 to enable the delivery and projected sustained systemic exposure in human of PF-00835231 to inhibit coronavirus family 3CL protease activity with selectivity over human host protease targets. Furthermore, we show that PF-00835231 has additive/synergistic activity in combination with remdesivir. We present the ADME, safety, in vitro, and in vivo antiviral activity data that supports the clinical evaluation of PF-07304814 as a potential COVID-19 treatment.


2021 ◽  
Vol 21 (4) ◽  
pp. 2075-2089
Author(s):  
Tiago da Silva Arouche ◽  
Anderson Yuri Martins ◽  
Teodorico de Castro Ramalho ◽  
Raul Nunes Carvalho Júnior ◽  
Fabio Luiz Paranhos Costa ◽  
...  

In the current pandemic situation raised due to COVID-19, drug reuse is emerging as the first line of treatment. The viral agent that causes this highly contagious disease and the acute respiratory syndrome coronavirus (SARS-CoV) share high nucleotide similarity. Therefore, it is structurally expected that many existing viral targets are similar to the first SARS-CoV, probably being inhibited by the same compounds. Here, we selected two viral proteins based on their vital role in the viral life cycle: Structure of the main protease SARS-CoV-2 and the structural base of the SARS-CoV-2 protease 3CL, both supporting the entry of the virus into the human host. The approved drugs used were azithromycin, ritonavir, lopinavir, oseltamivir, ivermectin and heparin, which are emerging as promising agents in the fight against COVID-19. Our hypothesis behind molecular coupling studies is to determine the binding affinities of these drugs and to identify the main amino acid residues that play a fundamental role in their mechanism of action. Additional studies on a wide range of FDA-approved drugs, including a few more protein targets, molecular dynamics studies, in vitro and biological in vivo evaluation are needed to identify combination therapy targeted at various stages of the viral life cycle. In our experiment in silico, based mainly on the molecular coupling approach, we investigated six different types of pharmacologically active drugs, aiming at their potential application alone or in combination with the reuse of drugs. The ligands showed stable conformations when analyzing the affinity energy in both proteases: ivermectin forming a stable complex with the two proteases with values −8.727 kcal/mol for Main Protease and −9.784 kcal/mol for protease 3CL, Heparin with values of −7.647 kcal/mol for the Main protease and −7.737 kcal/mol for the 3CL protease. Both conform to the catalytic site of the proteases. Our studies can provide an insight into the possible interactions between ligands and receptors, through better conformation. The ligands ivermectin, heparin and ritonavir showed stable conformations. Our in-silica docking data shows that the drugs we have identified can bind to the binding compartment of both proteases, this strongly supports our hypothesis that the development of a single antiviral agent targeting Main protease, or 3CL protease, or an agent used in combination with other potential therapies, it could provide an effective line of defense against diseases associated with coronaviruses.


2008 ◽  
Vol 48 ◽  
pp. S220 ◽  
Author(s):  
E. Cretton-Scott ◽  
C. Perigaud ◽  
S. Peyrottes ◽  
L. Licklider ◽  
M. Camire ◽  
...  

1992 ◽  
Vol 3 (4) ◽  
pp. 195-202 ◽  
Author(s):  
N. Desideri ◽  
C. Conti ◽  
I. Sestili ◽  
P. Tomao ◽  
M. L. Stein ◽  
...  

Oxazolinyl-isoflavans and −3(2H)-isoflavenes, substituted or not with a chlorine atom, were synthesized in order to compare their anti-rhinovirus activity with that of previously studied analogous compounds. The activity of the oxazolines and of the esters and acids, which are intermediates in the synthesis, was studied in vitro against rhinovirus serotype 1B infection in HeLa cells. The ability of various non cytotoxic concentrations to interfere with the development of the viral cytopathic effect and plaque formation was examined. All the tested compounds exerted a significant antiviral activity, and most of them were as active as some representative compounds of the oxazolinyl-phenoxyalkylisoxazole (WIN) series. 6-Oxazolinylisoflavan (VI) appeared to be the most interesting compound due to its high activity and therapeutic index. Among the substituted isoflavans and isoflavenes tested so far, the intermediate compound 6-chloro-3 (2H)-isoflavene-4′-carboxylic acid (XIX) was unexpectedly the most potent inhibitor of rhinovirus 1B plaque formation.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Xianghe Meng ◽  
Darong Yang ◽  
Rong Yu ◽  
Haizhen Zhu

It has been reported that IFN-λs inhibit HCV replication in vitro. But the mechanisms of how IL-28A conducts antiviral activity and the functions of IL-28A-induced ISGs (IFN-stimulated genes) are not fully understood. In this study, we found that IL-28A has the antiviral effect on HCV life cycle including viral replication, assembly, and release. IL-28A and IFN-αsynergistically inhibit virus replication. EPSTI1 (epithelial-stromal interaction 1), one of IL-28A-induced ISGs, plays a vital role in IL-28A-mediated antiviral activity. Furthermore, forced expression of EPSTI1 effectively inhibits HCV replication in the absence of interferon treatment, and knockdown of EPSTI1 contributes to viral enhancement. EPSTI1 can activate PKR promoter and induce several PKR-dependent genes, including IFN-β, IFIT1, OAS1, and RNase L, which is responsible for EPSTI1-mediated antiviral activity.


Author(s):  
А.Г. Емельянова ◽  
М.В. Никифорова ◽  
Е.С. Дон ◽  
Н.Р. Махмудова ◽  
И.Н. Фалынскова ◽  
...  

Цель исследования - изучение возможного прямого влияния препарата «Анаферон детский» на жизненный цикл вируса гриппа А в процессе развития инфекции, а также дозозависимости противовирусного эффекта in vitro . Методика. Исследование противовирусной активности препарата «Анаферон детский» in vitro было проведено с использованием культуры клеток MDCK (Madin Darby canine kidney) и эталонных штаммов вируса гриппа A (H1N1) pdm09: A/California/07/09 и А/California/04/09, полученных от ВОЗ. Использовались методы оценки подавления Анафероном детским вирусной репликации (по результатам иммуноферментного анализа по определению экспрессии внутренних белков NP и M1 вируса гриппа А) и его влияние на ультраструктурные особенности морфогенеза вируса гриппа методом электронной микроскопии. В качестве положительного контроля был использован Озельтамивир карбоксилат в концентрации 10 мкМ. Для мониторинга валидности экспериментальной модели в работе использовали клетки, зараженные вирусом без добавления экспериментальных образцов (контроль вируса), а также интактные клетки (клеточный контроль). Результаты. В ходе исследования показан дозозависимый противовирусный эффект препарата «Анаферон детский» для 3 тестируемых разведений - 1/8, 1/12, 1/16. Методом электронной микроскопии показано, что применение препарата «Анаферон детский» при сравнении с контрольным образцом влияло на процесс почкования вирионов. Заключение. Впервые показана дозозависимость противовирусного действия препарата «Анаферон детский», а также подтверждена его эффективность в отношении двух штаммов вируса пандемического гриппа А/H1N1. Документировано, что применение препарата «Анаферон детский» нарушает жизненный цикл вируса гриппа А. Механизмы развития такого эффекта требуют дополнительного изучения, однако можно предположить их связь с ИФН-индуцирующими свойствами препарата «Анаферон детский», так как было показано, что в начале лечения вирусной инфекции препарат вызывает индукцию синтеза белков системы интерферонов. The aim of this study was to evaluate a possible direct effect of Anaferon for Children on the life cycle of influenza A virus during infection development and a dose response of the antiviral effect in vitro. Methods. The in vitro antiviral activity of Anaferon for Children was studied on cultured MDCK cells and reference strains of influenza virus A (H1N1) pdm09: A/California/07/09 and A/California/04/09, both from the WHO. Inhibition of viral replication by Anaferon for Children and its effect on ultrastructural features of the influenza morphogenesis were evaluated using electron microscopy. Results. The study demonstrated a dose dependence of Anaferon for Children antiviral activity for three dilutions - 1/8, 1/12, and 1/16. Anaferon for Children affected the process of virion budding as compared to placebo. Conclusion. The study showed that the anti-influenza action of Anaferon for Children was dose-dependent and confirmed that this drug was effective against two strains of pandemic A/H1N1 influenza. Furthermore, Anaferon for children disrupted one or several stages of the virus life cycle.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Minsu Jang ◽  
Yea-In Park ◽  
Yeo-Eun Cha ◽  
Rackhyun Park ◽  
Sim Namkoong ◽  
...  

COVID-19, a global pandemic, has caused over 750,000 deaths worldwide as of August 2020. A vaccine or remedy for SARS-CoV-2, the virus responsible for COVID-19, is necessary to slow down the spread and lethality of COVID-19. However, there is currently no effective treatment available against SARS-CoV-2. In this report, we demonstrated that EGCG and theaflavin, the main active ingredients of green tea and black tea, respectively, are potentially effective to inhibit SARS-CoV-2 activity. Coronaviruses require the 3CL-protease for the cleavage of its polyprotein to make individual proteins functional. EGCG and theaflavin showed inhibitory activity against the SARS-CoV-2 3CL-protease in a dose-dependent manner, and the half inhibitory concentration (IC50) was 7.58 μg/ml for EGCG and 8.44 μg/ml for theaflavin. In addition, we did not observe any cytotoxicity for either EGCG or theaflavin at the concentrations tested up to 40 μg/ml in HEK293T cells. These results suggest that upon further study, EGCG and theaflavin can be potentially useful to treat COVID-19.


2016 ◽  
Vol 3 (4) ◽  
Author(s):  
Yong-Qiang Deng ◽  
Na-Na Zhang ◽  
Chun-Feng Li ◽  
Min Tian ◽  
Jia-Nan Hao ◽  
...  

Abstract The ongoing Zika virus (ZIKV) outbreaks have raised global concerns due to its unexpected clinical manifestations. Antiviral development is of high priority in response to the ZIKV emergency. In this study, we report that an adenosine analog NITD008 has potent in vitro and in vivo antiviral activity against ZIKV. The compound can effectively inhibit the historical and contemporary ZIKV strains in cultures as well as significantly reduce viremia and prevent mortality in A129 mice. Our results have demonstrated that NITD008 is potent inhibitor of ZIKV and can be used as reference inhibitor for future ZIKV antiviral drug screen and discovery.


2021 ◽  
Author(s):  
Kuanhui Xiang ◽  
Xinyuan Lai ◽  
Yanying Yu ◽  
Wei Xian ◽  
Fei Ye ◽  
...  

The global pandemic of COVID-19 caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection confers great threat to the public health. Human breastmilk is an extremely complex with nutritional composition to nourish infants and protect them from different kinds of infection diseases and also SARS-CoV-2 infection. Previous studies have found that breastmilk exhibited potent antiviral activity against SARS-CoV-2 infection. However, it is still unknown which component(s) in the breastmilk is responsible for its antiviral activity. Here, we identified Lactoferrin (LF), MUC1 and α-Lactalbumin (α-LA) from human breastmilk by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and in vitro confirmation that inhibited SARS-CoV-2 infection and analyzed their antiviral activity using the SARS-CoV-2 pseudovirus system and transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP) in the Huh7.5, Vero E6 and Caco-2-N cell lines. Additionally, we found that LF and MUC1 could inhibit viral attachment, entry and post-entry replication, while α-LA just inhibit viral attachment and entry. Importantly, LF, MUC1 and α-LA possess potent antiviral activities towards not only wild-type but also variants such as B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma) and B.1.617.1 (kappa). Moreover, LF from other species (e.g., bovine and goat) is still capable of blocking viral attachment to cellular heparan sulfate. Taken together, our study provided the first line of evidence that human breastmilk components (LF, MUC1 and α-LA) are promising therapeutic candidates warranting further development or treatingVID-19 given their exceedingly safety levels.


Sign in / Sign up

Export Citation Format

Share Document