interesting compound
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 19)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Verena Vogel ◽  
Richard Bauer ◽  
Stefanie Mauerer ◽  
Nicole Schiffelholz ◽  
Christian Haupt ◽  
...  

AbstractAs a conserved defense mechanism, many bacteria produce antimicrobial peptides, called bacteriocins, which provide a colonization advantage in a multispecies environment. Here the first bacteriocin of Streptococcus anginosus, designated Angicin, is described. S. anginosus is commonly described as a commensal, however it also possesses a high pathogenic potential. Therefore, understanding factors contributing to its host colonization and persistence are important. A radial diffusion assay was used to identify S. anginosus BSU 1211 as a potent bacteriocin producer. By genetic mutagenesis the background of bacteriocin production and the bacteriocin gene itself were identified. Synthetic Angicin shows high activity against closely related streptococci, listeria and vancomycin resistant enterococci. It has a fast mechanism of action and causes a membrane disruption in target cells. Angicin, present in cell free supernatant, is insensitive to changes in temperature from − 70 to 90 °C and pH values from 2 to 10, suggesting that it represents an interesting compound for potential applications in food preservation or clinical settings.


2021 ◽  
Vol 14 (12) ◽  
pp. 1242
Author(s):  
Philippe-Henri Secretan ◽  
Olivier Thirion ◽  
Hassane Sadou Yayé ◽  
Thibaud Damy ◽  
Alain Astier ◽  
...  

Because of its antioxidant, antimutagenic, and anti-infectious properties, epigallocatechin gallate (EGCG) is the most interesting compound among the green tea catechins polyphenols. However, its health effects are inconclusive due to its very low bioavailability, largely due to a particular instability that does not allow EGCG to reach the potency required for clinical developments. Over the last decade, many efforts have been made to improve the stability and bioavailability of EGCG using complex delivery systems such as nanotechnology, but these efforts have not been successful and easy to translate to industrial use. To meet the needs of a large-scale clinical trial requiring EGCG in a concentrated solution to anticipate swallowing impairments, we developed an EGCG-based aqueous solution in the simplest way while trying to circumvent EGCG instability. The solution was thoroughly characterized to sort out the unexpected stability outcome by combining experimental (HPLC-UV-mass spectrometry and infrared spectroscopy) and computational (density functional theory) studies. Against all odds, the EGCG–sucrose complex under certain conditions may have prevented EGCG from degradation in aqueous media. Indeed, in agreement with the ICH guidelines, the formulated solution was shown to be stable up to at least 24 months under 2–8 °C and at ambient temperature. Furthermore, considerable improvement in bioavailability in rats, against EGCG powder formulated in hard-gel capsules, was shown after gavage. Thus, the proposed formulation may provide an easily implementable platform to administer EGCG in the context of clinical development.


2021 ◽  
Author(s):  
Verena Vogel ◽  
Richard Bauer ◽  
Stefanie Mauerer ◽  
Nicole Schiffelholz ◽  
Christian Haupt ◽  
...  

AbstractAs a conserved defense mechanism, many bacteria produce antimicrobial peptides, called bacteriocins, which give a colonization advantage in a multispecies environment. Here the first bacteriocin of Streptococcus anginosus, designated Angicin, is described. S. anginosus is commonly described as a commensal, however it also possesses a high pathogenic potential. Therefore, understanding factors contributing to its host colonization and persistence are important. A radial diffusion assay was used to identify S. anginosus BSU 1211 as a potent bacteriocin producer. By genetic mutagenesis the background of bacteriocin production and the bacteriocin gene itself were identified. Synthetic Angicin shows high activity against closely related streptococci, listeria and vancomycin resistant enterococci. It has a fast mechanism of action and causes a membrane disruption in target cells. Angicin, present in cell free supernatant, is insensitive to changes in temperature from −70 to 90 °C and pH values from 2-10, suggesting that it represents an interesting compound for potential applications in food preservation or clinical settings.


Author(s):  
Irene Pachón-Angona ◽  
Maciej Maj ◽  
Artur Wnorowski ◽  
Helene Martin ◽  
Krzysztof Jóźwiak ◽  
...  

Background: Alzheimer’s disease is a chronic neurodegenerative chronic disease with a heavy social and economic impact in our developed societies, which still lacks an efficient therapy. Method: This paper describes the Hantzsch multicomponent synthesis of twelve alkyl hexahydro-quinoline-3-carboxylates, 4a–l, along with the evaluation of their Ca2+ channel blockade capacity, cholinesterase inhibition and antioxidant power. Results: Compound 4l showed submicromolar inhibition of butyrylcholinesterase, Ca2+ channel antagonism and an antioxidant effect. Conclusion: Compound 4l is an interesting compound that deserves further investigation for Alzheimer’s disease therapy.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1038
Author(s):  
Patrícia Correia ◽  
Paula Araújo ◽  
Carolina Ribeiro ◽  
Hélder Oliveira ◽  
Ana Rita Pereira ◽  
...  

Human skin is commonly described as a particularly dynamic and complex environment, with a physiological balance continuously orchestrated by numerous internal and external factors. Intrinsic aging, exposure to UV radiation and skin pathogens are some of the key players that account for dermatological alterations and ailments. In this regard, this study intended to explore the potential skin-health beneficial properties of a group of molecules belonging to the anthocyanin family: cyanidin- and malvidin-3-O-glucosides and some of their structurally related pigments, resulting in a library of compounds with different structural properties and color hues. The inclusion of both purified compounds and crude extracts provided some insights into their distinctive effects when tested as individual agents or as part of multicomponent mixtures. Overall, most of the compounds were found to reduce biofilm production by S. aureus and P. aeruginosa reference strains, exhibit UV-filter capacity, attenuate the production of reactive oxygen species in human skin keratinocytes and fibroblasts and also showed inhibitory activity of skin-degrading enzymes, in the absence of cytotoxic effects. Carboxypyranocyanidin-3-O-glucoside stood out for its global performance which, combined with its greater structural stability, makes this a particular interesting compound for potential incorporation in topical formulations. Results provide strong evidence of the skin protective effects of these pigments, supporting their further application for cosmeceutical purposes.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Annika I. Smeds ◽  
René Herrera ◽  
Jani Rahkila ◽  
Stefan M. Willför

Abstract In Betula celtiberica (Iberian white birch) stemwood, the content and composition of lipophilic and hydrophilic extractives were determined; these have not been reported previously in this species. The total gravimetric amount of extractives was 2.2% of dry wood, of which lipophilic extractives accounted for 0.39% and hydrophilic extractives 1.84% (determined by gas chromatography–flame ionisation detection [GC–FID]). The lipophilic extract contained mainly triterpenoids and steroids. The hydrophilic extract (acetone–water 95:5 v v−1) contained mainly sugars, compounds not eluting on GC, and a large number of unidentified compounds, which accounted for 0.87% of dry wood and dominated the extract. The compounds were isolated from the extract by silica column chromatography and further purified. GC–electron impact (EI)-MS of the silylated compounds showed characteristic mass fragments that suggested them to be diarylheptanoids (DAHs). This is an interesting compound group, as many of them have shown a large variety of beneficial biological effects. Of over 80 detected DAHs, the exact mass of 17 compounds was determined by electrospray ionisation-quadrupole-time-of-flight (ESI-QTOF)-MS, and of these, the structure of 11 compounds was elucidated by nuclear magnetic resonance (NMR). One was a meta,para-bridged diphenylether and 10 were meta,meta-bridged biphenyls, of which one, 3,8,9,17-tetrahydroxy-[7,0]-metacyclophane, has not been described previously. Because of low concentrations, 21 DAHs were only tentatively identified, and of these, as many as 17 seem to be previously undescribed compounds.


2021 ◽  
pp. 153537022110048
Author(s):  
Siyue Lou ◽  
Huanwu Hong ◽  
Liwaliding Maihesuti ◽  
Hang Gao ◽  
Zhihui Zhu ◽  
...  

Hydnocarpin D (HD) is a bioactive flavonolignan compound that possesses promising anti-tumor activity, although the mechanism is not fully understood. Using T cell acute lymphoblastic leukemia (T-ALL) cell lines Jurkat and Molt-4 as model system, we found that HD suppressed T-ALL proliferation in vitro, via induction of cell cycle arrest and subsequent apoptosis. Furthermore, HD increased the LC3-II levels and the formation of autophagolysosome vacuoles, both of which are markers for autophagy. The inhibition of autophagy by either knockdown of ATG5/7 or pre-treatment of 3-MA partially rescued HD-induced apoptosis, thus suggesting that autophagy enhanced the efficacy of HD. Interestingly, this cytotoxic autophagy triggered ferroptosis, as evidenced by the accumulation of lipid ROS and decrease of GSH and GPX4, while inhibition of autophagy impeded ferroptotic cell death. Our study suggests that HD triggers multiple cell death processes and is an interesting compound that should be evaluated in future preclinical studies.


2021 ◽  
Vol 14 (2) ◽  
pp. 129
Author(s):  
Sofia Parrasia ◽  
Andrea Rossa ◽  
Tatiana Varanita ◽  
Vanessa Checchetto ◽  
Riccardo De Lorenzi ◽  
...  

A developing family of chemotherapeutics—derived from 5-(4-phenoxybutoxy)psoralen (PAP-1)—target mitochondrial potassium channel mtKv1.3 to selectively induce oxidative stress and death of diseased cells. The key to their effectiveness is the presence of a positively charged triphenylphosphonium group which drives their accumulation in the organelles. These compounds have proven their preclinical worth in murine models of cancers such as melanoma and pancreatic adenocarcinoma. In in vitro experiments they also efficiently killed glioblastoma cells, but in vivo they were powerless against orthotopic glioma because they were completely unable to overcome the blood-brain barrier. In an effort to improve brain delivery we have now coupled one of these promising compounds, PAPTP, to well-known cell-penetrating and brain-targeting peptides TAT48–61 and Angiopep-2. Coupling has been obtained by linking one of the phenyl groups of the triphenylphosphonium to the first amino acid of the peptide via a reversible carbamate ester bond. Both TAT48–61 and Angiopep-2 allowed the delivery of 0.3–0.4 nmoles of construct per gram of brain tissue upon intravenous (i.v.) injection of 5 µmoles/kg bw to mice. This is the first evidence of PAPTP delivery to the brain; the chemical strategy described here opens the possibility to conjugate PAPTP to small peptides in order to fine-tune tissue distribution of this interesting compound.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 771
Author(s):  
Valentina Noemi Madia ◽  
Alice Nicolai ◽  
Antonella Messore ◽  
Alessandro De Leo ◽  
Davide Ialongo ◽  
...  

Background: Anticancer drug resistance is a challenging phenomenon of growing concern which arises from alteration in drug targets. Despite the fast speed of new chemotherapeutic agent design, the increasing prevalence of this phenomenon requires further research and treatment development. Recently, we reported a new aminopyrimidine compound—namely RDS 344—as a potential innovative anticancer agent. Methods: Herein, we report the design, synthesis, and anti-proliferative activity of new aminopyrimidine derivatives structurally related to RDS 3442 obtained by carrying out substitutions at position 6 of the pyrimidine core and/or on the 2-aniline ring of our hit. The ability to inhibit cell proliferation was evaluated on different types of tumors, glioblastoma, triple-negative breast cancer, oral squamous cell carcinomas and colon cancer plus on human dermal fibroblasts chosen as control of normal cells. Results: The most interesting compound was the N-benzyl counterpart of RDS 3442, namely 2a, that induced a significant decrease in cell viability in all the tested tumor cell lines, with EC50s ranging from 4 and 8 μM, 4–13 times more active of hit. Conclusions: These data suggest a potential role for this class of molecules as promising tool for new approaches in treating cancers of different histotype.


2021 ◽  
Author(s):  
Júlia Scaff Moreira Dias ◽  
Felipe Terra Martins ◽  
João Honorato de Araújo Neto ◽  
Eduardo Ernesto Castellano ◽  
Rommel Bezerra Viana ◽  
...  

Six ruthenium–benzophenone complexes were synthesized in order to combine the chemistry of two interesting compound classes aiming at medicinal chemistry innovation.


Sign in / Sign up

Export Citation Format

Share Document