scholarly journals High-resolution Crystal Structures of Transient Intermediates in the Phytochrome Photocycle

2020 ◽  
Author(s):  
Melissa Carrillo ◽  
Suraj Pandey ◽  
Juan Sanchez ◽  
Moraima Noda ◽  
Ishwor Poudyal ◽  
...  

AbstractPhytochromes are red/far-red light photoreceptors in bacteria to plants, which elicit a variety of important physiological responses. They display a reversible photocycle between the resting (dark) Pr state and the light activated Pfr state, in which light signals are received and transduced as structural change through the entire protein to modulate the activity of the protein. It is unknown how the Pr-to-Pfr interconversion occurs as the structure of intermediates remain notoriously elusive. Here, we present short-lived crystal structures of the classical phytochrome from myxobacterium Stigmatella aurantiaca captured by an X-ray Free Electron Laser 5 ns and 33ms after light illumination of the Pr state. We observe large structural displacements of the covalently bound bilin chromophore, which trigger a bifurcated signaling pathway. The snapshots show with atomic precision how the signal progresses from the chromophore towards the output domains, explaining how plants, bacteria and fungi sense red light.

Author(s):  
A. Zangvil ◽  
L.J. Gauckler ◽  
G. Schneider ◽  
M. Rühle

The use of high temperature special ceramics which are usually complex materials based on oxides, nitrides, carbides and borides of silicon and aluminum, is critically dependent on their thermomechanical and other physical properties. The investigations of the phase diagrams, crystal structures and microstructural features are essential for better understanding of the macro-properties. Phase diagrams and crystal structures have been studied mainly by X-ray diffraction (XRD). Transmission electron microscopy (TEM) has contributed to this field to a very limited extent; it has been used more extensively in the study of microstructure, phase transformations and lattice defects. Often only TEM can give solutions to numerous problems in the above fields, since the various phases exist in extremely fine grains and subgrain structures; single crystals of appreciable size are often not available. Examples with some of our experimental results from two multicomponent systems are presented here. The standard ion thinning technique was used for the preparation of thin foil samples, which were then investigated with JEOL 200A and Siemens ELMISKOP 102 (for the lattice resolution work) electron microscopes.


1999 ◽  
Vol 82 (08) ◽  
pp. 271-276 ◽  
Author(s):  
Glen Spraggon ◽  
Stephen Everse ◽  
Russell Doolittle

IntroductionAfter a long period of anticipation,1 the last two years have witnessed the first high-resolution x-ray structures of fragments from fibrinogen and fibrin.2-7 The results confirmed many aspects of fibrinogen structure and function that had previously been inferred from electron microscopy and biochemistry and revealed some unexpected features. Several matters have remained stubbornly unsettled, however, and much more work remains to be done. Here, we review several of the most significant findings that have accompanied the new x-ray structures and discuss some of the problems of the fibrinogen-fibrin conversion that remain unresolved. * Abbreviations: GPR—Gly-Pro-Arg-derivatives; GPRPam—Gly-Pro-Arg-Pro-amide; GHRPam—Gly-His-Arg-Pro-amide


2019 ◽  
Author(s):  
Yunyang Zhang ◽  
Janice Mui ◽  
Thimali Arumaperuma ◽  
James P. Lingford ◽  
ETHAN GODDARD-BORGER ◽  
...  

<p>The sulfolipid sulfoquinovosyl diacylglycerol (SQDG) and its headgroup, the sulfosugar sulfoquinovose (SQ), are estimated to harbour up to half of all organosulfur in the biosphere. SQ is liberated from SQDG and related glycosides by the action of sulfoquinovosidases (SQases). We report a 10-step synthesis of SQDG that we apply to the preparation of saturated and unsaturated lipoforms. We also report an expeditious synthesis of SQ and (<sup>13</sup>C<sub>6</sub>)SQ, and X-ray crystal structures of sodium and potassium salts of SQ. Finally, we report the synthesis of a fluorogenic SQase substrate, methylumbelliferyl a-D-sulfoquinovoside, and examination of its cleavage kinetics by two recombinant SQases.</p>


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 807
Author(s):  
Ilya V. Kornyakov ◽  
Sergey V. Krivovichev

Single crystals of two novel shchurovskyite-related compounds, K2Cu[Cu3O]2(PO4)4 (1) and K2.35Cu0.825[Cu3O]2(PO4)4 (2), were synthesized by crystallization from gaseous phase and structurally characterized using single-crystal X-ray diffraction analysis. The crystal structures of both compounds are based upon similar Cu-based layers, formed by rods of the [O2Cu6] dimers of oxocentered (OCu4) tetrahedra. The topologies of the layers show both similarities and differences from the shchurovskyite-type layers. The layers are connected in different fashions via additional Cu atoms located in the interlayer, in contrast to shchurovskyite, where the layers are linked by Ca2+ cations. The structures of the shchurovskyite family are characterized using information-based structural complexity measures, which demonstrate that the crystal structure of 1 is the simplest one, whereas that of 2 is the most complex in the family.


2021 ◽  
Author(s):  
Stéphane Baeriswyl ◽  
Hippolyte Personne ◽  
Ivan Di Bonaventura ◽  
Thilo Köhler ◽  
Christian van Delden ◽  
...  

We report the first X-ray crystal structures of mixed chirality α-helices comprising only natural residues as the example of bicyclic and linear membrane disruptive amphiphilic antimicrobial peptides containing seven l- and four d-residues.


Sign in / Sign up

Export Citation Format

Share Document