scholarly journals Subcortical Atlas of the Rhesus Macaque (SARM) for Magnetic Resonance Imaging

2020 ◽  
Author(s):  
Renée Hartig ◽  
Daniel Glen ◽  
Benjamin Jung ◽  
Nikos K. Logothetis ◽  
George Paxinos ◽  
...  

AbstractDigitized neuroanatomical atlases are crucial for localizing brain structures and analyzing functional networks identified by magnetic resonance imaging (MRI). To aid in MRI data analysis, we have created a comprehensive parcellation of the rhesus macaque subcortex using a high-resolution ex vivo structural imaging scan. The structural scan and its parcellation were warped to the updated NIMH Macaque Template (NMT v2), an in vivo population template, where the parcellation was refined to produce the Subcortical Atlas of the Rhesus Macaque (SARM). The subcortical parcellation and nomenclature reflect those of the 4th edition of the Rhesus Monkey Brain in Stereotaxic Coordinates (RMBSC4; Paxinos et al., in preparation). The SARM features six parcellation levels, arranged hierarchically from fine regions-of-interest (ROIs) to broader composite regions, suited for fMRI studies. As a test, we ran a functional localizer for the dorsal lateral geniculate (DLG) nucleus in three macaques and found significant fMRI activation in this atlas region. The SARM has been made openly available to the neuroimaging community and can easily be used with common MR data processing software, such as AFNI, where the atlas can be embedded into the software alongside cortical macaque atlases.HighlightsWe present the Subcortical Atlas of the Rhesus Macaque (SARM).SARM provides a neuroanatomical reference frame for neuroimaging analysis.The entire subcortex is mapped, including the thalamus, basal ganglia, and brainstem.ROIs are grouped hierarchically, making SARM useful at multiple spatial resolutions.SARM is in the NMT v2 template space and complements the CHARM atlas for the cortex.

2017 ◽  
Vol 45 (4) ◽  
pp. 472-480 ◽  
Author(s):  
Ronit Shaltiel-Karyo ◽  
Yonit Tsarfati ◽  
Anna Rubinski ◽  
Eduardo Zawoznik ◽  
Irena Weinstock ◽  
...  

Infusion site reactions are common following subcutaneous infusion of drugs. Such reactions can lead to discontinuation of the treatment. Therefore, assessment of such reactions is essential during preclinical safety studies, and magnetic resonance imaging (MRI) can assist in evaluation. Here, in vivo and ex vivo MRI evaluations were used in addition to classical histopathology to assess the infusion site reaction to ND0701, a novel formulation of apomorphine base developed for the treatment of Parkinson’s disease, in comparison to the commercial apomorphine hydrochloride (HCl) formulation. Both formulations, each at two concentrations, were continuously administered subcutaneously for 20 hr to each of 3 male and 3 female domestic pigs. Based on MRI evaluations, there was a gradual decrease in the volume of the subcutaneous lesions over 4 weeks, with smaller lesions and quicker resolution with ND0701 at concentrations 2.5- to 5-fold higher when compared to the commercial apomorphine HCl formulation. Histopathological evaluation of ND0701 revealed only minimal inflammation at the sites of infusion, whereas the commercial apomorphine HCl caused persistent inflammatory reactions and necrosis. This study provides support to the use of MRI in preclinical testing of subcutaneous drugs when evaluating local site reactions.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Michael O Breckwoldt ◽  
Julia Bode ◽  
Felix T Kurz ◽  
Angelika Hoffmann ◽  
Katharina Ochs ◽  
...  

Neoangiogenesis is a pivotal therapeutic target in glioblastoma. Tumor monitoring requires imaging methods to assess treatment effects and disease progression. Until now mapping of the tumor vasculature has been difficult. We have developed a combined magnetic resonance and optical toolkit to study neoangiogenesis in glioma models. We use in vivo magnetic resonance imaging (MRI) and correlative ultramicroscopy (UM) of ex vivo cleared whole brains to track neovascularization. T2* imaging allows the identification of single vessels in glioma development and the quantification of neovessels over time. Pharmacological VEGF inhibition leads to partial vascular normalization with decreased vessel caliber, density, and permeability. To further resolve the tumor microvasculature, we performed correlated UM of fluorescently labeled microvessels in cleared brains. UM resolved typical features of neoangiogenesis and tumor cell invasion with a spatial resolution of ~5 µm. MR-UM can be used as a platform for three-dimensional mapping and high-resolution quantification of tumor angiogenesis.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Clemens Neudorfer ◽  
Jürgen Germann ◽  
Gavin J. B. Elias ◽  
Robert Gramer ◽  
Alexandre Boutet ◽  
...  

Abstract The study of the hypothalamus and its topological changes provides valuable insights into underlying physiological and pathological processes. Owing to technological limitations, however, in vivo atlases detailing hypothalamic anatomy are currently lacking in the literature. In this work we aim to overcome this shortcoming by generating a high-resolution in vivo anatomical atlas of the human hypothalamic region. A minimum deformation averaging (MDA) pipeline was employed to produce a normalized, high-resolution template from multimodal magnetic resonance imaging (MRI) datasets. This template was used to delineate hypothalamic (n = 13) and extrahypothalamic (n = 12) gray and white matter structures. The reliability of the atlas was evaluated as a measure for voxel-wise volume overlap among raters. Clinical application was demonstrated by superimposing the atlas into datasets of patients diagnosed with a hypothalamic lesion (n = 1) or undergoing hypothalamic (n = 1) and forniceal (n = 1) deep brain stimulation (DBS). The present template serves as a substrate for segmentation of brain structures, specifically those featuring low contrast. Conversely, the segmented hypothalamic atlas may inform DBS programming procedures and may be employed in volumetric studies.


2005 ◽  
Vol 2 (2) ◽  
pp. 133-140 ◽  
Author(s):  
D. Mietchen ◽  
H. Keupp ◽  
B. Manz ◽  
F. Volke

Abstract. For more than a decade, Magnetic Resonance Imaging (MRI) has been routinely employed in clinical diagnostics because it allows non-invasive studies of anatomical structures and physiological processes in vivo and to differentiate between healthy and pathological states, particularly of soft tissue. Here, we demonstrate that MRI can likewise be applied to fossilized biological samples and help in elucidating paleopathological and paleoecological questions: Five anomalous guards of Jurassic and Cretaceous belemnites are presented along with putative paleopathological diagnoses directly derived from 3D MR images with microscopic resolution. Syn vivo deformities of both the mineralized internal rostrum and the surrounding former soft tissue can be traced back in part to traumatic events of predator-prey-interactions, and partly to parasitism. Besides, evidence is presented that the frequently observed anomalous apical collar might be indicative of an inflammatory disease. These findings highlight the potential of Magnetic Resonance techniques for further paleontological applications.


2021 ◽  
Vol 10 (11) ◽  
pp. 2461
Author(s):  
José María Mora-Gutiérrez ◽  
María A. Fernández-Seara ◽  
Rebeca Echeverria-Chasco ◽  
Nuria Garcia-Fernandez

Renal magnetic resonance imaging (MRI) techniques are currently in vogue, as they provide in vivo information on renal volume, function, metabolism, perfusion, oxygenation, and microstructural alterations, without the need for exogenous contrast media. New imaging biomarkers can be identified using these tools, which represent a major advance in the understanding and study of the different pathologies affecting the kidney. Diabetic kidney disease (DKD) is one of the most important diseases worldwide due to its high prevalence and impact on public health. However, its multifactorial etiology poses a challenge for both basic and clinical research. Therefore, the use of novel renal MRI techniques is an attractive step forward in the comprehension of DKD, both in its pathogenesis and in its detection and surveillance in the clinical practice. This review article outlines the most promising MRI techniques in the study of DKD, with the purpose of stimulating their clinical translation as possible tools for the diagnosis, follow-up, and monitoring of the clinical impacts of new DKD treatments.


1999 ◽  
Vol 24 (2) ◽  
pp. 245-248 ◽  
Author(s):  
T. NAKAMURA ◽  
Y. YABE ◽  
Y. HORIUCHI

In vivo dynamic changes in the interosseous membrane (IOM) during forearm rotation were studied using magnetic resonance imaging (MRI). The right forearms of 20 healthy volunteers were examined in five different rotational positions. Axial slices were obtained at the proximal quarter, the middle and the distal quarter of the forearm. The changes in shape of the IOM during rotation were observed in an axial MR plane. For each image, we measured the interosseous distance and the length of the interosseous membrane. Images of the tendinous and membranous parts of the IOM could be differentiated by thickness. There were minimal dynamic changes in the tendinous part on the MRI while the membranous part showed numerous changes during rotation. The interosseous distance and the length of the interosseous membrane were maximum from a neutral to a slightly supinated position. The tendinous part is considered to be taut during rotation to provide stability between the radius and the ulna, but the membranous part which is soft, thin and elastic, allows smooth rotation.


2013 ◽  
Vol 284-287 ◽  
pp. 1552-1558
Author(s):  
Jen Fang Yu ◽  
Kun Che Lee

This research aims to characterize the geometry of the human cochlear spiral in vivo by measuring curvature and length. Magnetic resonance imaging (MRI) was used to visualise the human inner ear in vivo. The inner ear was imaged in 12 ears in 7 subjects recruited. Visualisation of the cochlear spiral was enhanced by T2 weighting and further processing of the raw images. The spirals were divided into 3 segments: the basal turn segment, the middle turn segment and the apex turn segment. The length and curvature of each segment were measured. The measured lengths of cochlear spiral are consistent with data in the literature derived from anatomical dissections. Overall, the apex turn segment of the cochlear had the greatest degree of curvature. A detailed description of the cochlear spiral is provided, using measurements of curvature and length. This data will provide a valuable reference in the development of cochlear implantation procedures.


Sign in / Sign up

Export Citation Format

Share Document