scholarly journals A Prediction Tool for Plaque Progression Based on Patient-specific Multi-Physical Modeling

2020 ◽  
Author(s):  
Jichao Pan ◽  
Yan Cai ◽  
Liang Wang ◽  
Akiko Maehara ◽  
Gary S. Mintz ◽  
...  

AbstractAtherosclerotic plaque rupture is responsible for a majority of acute vascular syndromes and this study aims to develop a prediction tool for plaque progression and rupture. Based on the follow-up coronary intravascular ultrasound imaging data, we performed patient-specific multi-physical modeling study on four patients to obtain the evolutional processes of the microenvironment during plaque progression. Four main pathophysiological processes, i.e., lipid deposition, inflammatory response, migration and proliferation of smooth muscle cells (SMCs), and neovascularization were coupled based on the interactions demonstrated by experimental and clinical observations. A scoring table integrating the dynamic microenvironmental indicators with the classical risk index was proposed to differentiate their progression to stable and unstable plaques. The heterogeneity of plaque microenvironment for each patient was demonstrated by the growth curves of the main microenvironmental factors. The possible plaque developments were predicted by incorporating the systematic index with microenvironmental indicators. Five microenvironmental factors (LDL, ox-LDL, MCP-1, SMC, and foam cell) showed significant differences between stable and unstable group (p < 0.01). The inflammatory microenvironments (monocyte and macrophage) had negative correlations with the necrotic core (NC) expansion in the stable group, while very strong positive correlations in unstable group. The inflammatory microenvironment is strongly correlated to the NC expansion in unstable plaques, suggesting that the inflammatory factors may play an important role in the formation of a vulnerable plaque. This prediction tool will improve our understanding of the mechanism of plaque progression and provide a new strategy for early detection and prediction of high-risk plaques.Author summaryBesides the traditional systematic factors, the influences of the local microenvironmental factors on atherosclerotic plaque progression have been demonstrated. Mathematical and computational modeling is an important tool to investigate the complex interplay between plaque progression and the microenvironment, and provides a potential way toward the prediction of plaque vulnerability according to the comprehensive evaluation of both morphological and/or biochemical factors in tissue level with microenvironmental factors in cellular level. We performed patient-specific multi-physical modeling study on four patients to obtain the evolutional processes of the microenvironment during plaque progression and predicted the possible plaque developments. A scoring table integrating the dynamic microenvironmental indicators with the classical risk index was proposed to differentiate their progression to stable and unstable plaques. Based on patient-specific imaging data, the mathematical model will provide a novel method to predict the changes of plaque microenvironment and improve ability to access the personal therapeutic strategy for atherosclerotic plaque.

2021 ◽  
Vol 17 (3) ◽  
pp. e1008344
Author(s):  
Jichao Pan ◽  
Yan Cai ◽  
Liang Wang ◽  
Akiko Maehara ◽  
Gary S. Mintz ◽  
...  

Atherosclerotic plaque rupture is responsible for a majority of acute vascular syndromes and this study aims to develop a prediction tool for plaque progression and rupture. Based on the follow-up coronary intravascular ultrasound imaging data, we performed patient-specific multi-physical modeling study on four patients to obtain the evolutional processes of the microenvironment during plaque progression. Four main pathophysiological processes, i.e., lipid deposition, inflammatory response, migration and proliferation of smooth muscle cells (SMCs), and neovascularization were coupled based on the interactions demonstrated by experimental and clinical observations. A scoring table integrating the dynamic microenvironmental indicators with the classical risk index was proposed to differentiate their progression to stable and unstable plaques. The heterogeneity of plaque microenvironment for each patient was demonstrated by the growth curves of the main microenvironmental factors. The possible plaque developments were predicted by incorporating the systematic index with microenvironmental indicators. Five microenvironmental factors (LDL, ox-LDL, MCP-1, SMC, and foam cell) showed significant differences between stable and unstable group (p < 0.01). The inflammatory microenvironments (monocyte and macrophage) had negative correlations with the necrotic core (NC) expansion in the stable group, while very strong positive correlations in unstable group. The inflammatory microenvironment is strongly correlated to the NC expansion in unstable plaques, suggesting that the inflammatory factors may play an important role in the formation of a vulnerable plaque. This prediction tool will improve our understanding of the mechanism of plaque progression and provide a new strategy for early detection and prediction of high-risk plaques.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009709
Author(s):  
Jichao Pan ◽  
Yan Cai ◽  
Liang Wang ◽  
Akiko Maehara ◽  
Gary S. Mintz ◽  
...  

Author(s):  
Chun Yang ◽  
Joseph D. Petruccelli ◽  
Zhongzhao Teng ◽  
Chun Yuan ◽  
Gador Canton ◽  
...  

Atherosclerotic plaque rupture and progression have been the focus of intensive investigations in recent years. The mechanisms governing plaque progression and rupture process are not well understood. Using computational models based on patient-specific multi-year in vivo MRI data, our recent results indicated that 18 out of 21 patients studied showed significant negative correlation between plaque progression measured by vessel wall thickness increase (WTI) and plaque wall (structural) stress (PWS) [1]. In this paper, a computational procedure based on meshless generalized finite difference (MGFD) method and serial magnetic resonance imaging (MRI) data was introduced to simulate plaque progression. Participating patients were scanned three times (T1, T2, and T3, at intervals of approximately 18 months) to obtain plaque progression data. Vessel wall thickness (WT) changes were used as the measure for plaque progression. Starting from T2 plaque geometry, plaque progression was simulated by solving the solid model and adjusting wall thickness using plaque growth functions iteratively until time T3 is reached. Numerically simulated plaque progression showed very good agreement with actual plaque geometry at T3 given by MRI data. We believe this is the first time plaque progression simulation results based on multi-year patient-tracking data are reported. Multi-year tracking data and MRI-based progression simulation add time dimension to plaque vulnerability assessment and will improve prediction accuracy.


Author(s):  
Chun Yang ◽  
Gador Canton ◽  
Chun Yuan ◽  
Tom Hatsukami ◽  
Dalin Tang

Atherosclerotic plaque progression involves biological, structural and mechanical factors. Previous work has shown that initiation and early progression of atherosclerotic plaque correlate negatively with flow wall shear stresses [1–2]. However, plaque growth functions based on patient-specific data to predict future plaque growth are lacking in the current literature. Six plaque growth functions based on fluid-structure-interaction (FSI) models and in vivo serial magnetic resonance image (MRI) data were proposed for progression prediction. This is to test the hypothesis that combining plaque morphology, plaque wall maximum principal stress (WS), strain (WSN) and flow maximum shear stress (FSS) could better predict plaque progression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yeonyee E. Yoon ◽  
Lohendran Baskaran ◽  
Benjamin C. Lee ◽  
Mohit Kumar Pandey ◽  
Benjamin Goebel ◽  
...  

AbstractPatient-specific phenotyping of coronary atherosclerosis would facilitate personalized risk assessment and preventive treatment. We explored whether unsupervised cluster analysis can categorize patients with coronary atherosclerosis according to their plaque composition, and determined how these differing plaque composition profiles impact plaque progression. Patients with coronary atherosclerotic plaque (n = 947; median age, 62 years; 59% male) were enrolled from a prospective multi-national registry of consecutive patients who underwent serial coronary computed tomography angiography (median inter-scan duration, 3.3 years). K-means clustering applied to the percent volume of each plaque component and identified 4 clusters of patients with distinct plaque composition. Cluster 1 (n = 52), which comprised mainly fibro-fatty plaque with a significant necrotic core (median, 55.7% and 16.0% of the total plaque volume, respectively), showed the least total plaque volume (PV) progression (+ 23.3 mm3), with necrotic core and fibro-fatty PV regression (− 5.7 mm3 and − 5.6 mm3, respectively). Cluster 2 (n = 219), which contained largely fibro-fatty (39.2%) and fibrous plaque (46.8%), showed fibro-fatty PV regression (− 2.4 mm3). Cluster 3 (n = 376), which comprised mostly fibrous (62.7%) and calcified plaque (23.6%), showed increasingly prominent calcified PV progression (+ 21.4 mm3). Cluster 4 (n = 300), which comprised mostly calcified plaque (58.7%), demonstrated the greatest total PV increase (+ 50.7mm3), predominantly increasing in calcified PV (+ 35.9 mm3). Multivariable analysis showed higher risk for plaque progression in Clusters 3 and 4, and higher risk for adverse cardiac events in Clusters 2, 3, and 4 compared to that in Cluster 1. Unsupervised clustering algorithms may uniquely characterize patient phenotypes with varied atherosclerotic plaque profiles, yielding distinct patterns of progressive disease and outcome.


2021 ◽  
Author(s):  
Y Cai ◽  
Jichao Pan ◽  
Zhiyong Li

Abstract Background Growing experimental evidence has identified neovascularization from the adventitial vasa vasorum and induced intraplaque hemorrhage (IPH) as critical indicators during the development of vulnerable atherosclerotic plaques. In this study, we propose a mathematical model incorporating intraplaque angiogenesis and hemodynamic calculation of the microcirculation, in order to obtain the quantitative evaluation of the influences of intraplaque neovascularization and hemorrhage on the vulnerable plaque development. A two-dimensional nine-point model of angiogenic microvasculature is generated based on histology of a patient’s carotid plaque. The intraplaque angiogenesis model includes three key cells (endothelial cells, smooth muscle cells and macrophages) and three key chemical factors (vascular endothelial growth factors, extracellular matrix and matrix metalloproteinase), which densities and concentrations are described by a series of reaction-diffusion equations. The hemodynamic calculation by coupling the intravascular blood flow, the extravascular plasma flow and the transvascular transport is carried out on the generated angiogenic microvessel network. We then define the IPH area by using the plasma concentration in the interstitial tissue, as well as the extravascular transport across the capillary wall. Results The simulational results reproduce a series of pathophysiological phenomena during the atherosclerotic plaque progression, such as the high microvessel density region at the shoulder areas, the enlarged necrotic core, and the IPH caused by the extravascular plasma flow across the leaky wall of the neovasculature. The simulational results show significant consistency with both the MR imaging data and in vitro experimental observations in quantity ground. Moreover, the sensitivity analysis of model parameters reveals that the IPH area and extent can be reduced significantly by decreasing the MVD and the wall permeability of the neovasculature. Conclusions The current quantitative model could help us to better understand the roles of microvascular and intraplaque hemorrhage during the carotid plaque progression.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yan Cai ◽  
Jichao Pan ◽  
Zhiyong Li

Abstract Background Growing experimental evidence has identified neovascularization from the adventitial vasa vasorum and induced intraplaque hemorrhage (IPH) as critical indicators during the development of vulnerable atherosclerotic plaques. In this study, we propose a mathematical model incorporating intraplaque angiogenesis and hemodynamic calculation of the microcirculation, to obtain the quantitative evaluation of the influences of intraplaque neovascularization and hemorrhage on vulnerable plaque development. A two-dimensional nine-point model of angiogenic microvasculature is generated based on the histology of a patient’s carotid plaque. The intraplaque angiogenesis model includes three key cells (endothelial cells, smooth muscle cells, and macrophages) and three key chemical factors (vascular endothelial growth factors, extracellular matrix, and matrix metalloproteinase), which densities and concentrations are described by a series of reaction–diffusion equations. The hemodynamic calculation by coupling the intravascular blood flow, the extravascular plasma flow, and the transvascular transport is carried out on the generated angiogenic microvessel network. We then define the IPH area by using the plasma concentration in the interstitial tissue, as well as the extravascular transport across the capillary wall. Results The simulational results reproduce a series of pathophysiological phenomena during the atherosclerotic plaque progression. It is found that the high microvessel density region at the shoulder areas and the extravascular flow across the leaky wall of the neovasculature contribute to the IPH observed widely in vulnerable plaques. The simulational results are validated by both the in vivo MR imaging data and in vitro experimental observations and show significant consistency in quantity ground. Moreover, the sensitivity analysis of model parameters reveals that the IPH area and extent can be reduced significantly by decreasing the MVD and the wall permeability of the neovasculature. Conclusions The current quantitative model could help us to better understand the roles of microvascular and intraplaque hemorrhage during the carotid plaque progression.


Author(s):  
Nicolás González Romo ◽  
Franco Ravera Zunino

AbstractVirtual reality (VR) has increasingly been implemented in neurosurgical practice. A patient with an unruptured anterior communicating artery (AcoA) aneurysm was referred to our institution. Imaging data from computed tomography angiography (CTA) was used to create a patient specific 3D model of vascular and skull base anatomy, and then processed to a VR compatible environment. Minimally invasive approaches (mini-pterional, supraorbital and mini-orbitozygomatic) were simulated and assessed for adequate vascular exposure in VR. Using an eyebrow approach, a mini-orbitozygomatic approach was performed, with clip exclusion of the aneurysm from the circulation. The step-by-step process of VR planning is outlined, and the advantages and disadvantages for the neurosurgeon of this technology are reviewed.


2021 ◽  
Vol 22 (11) ◽  
pp. 5718
Author(s):  
Michal Kowara ◽  
Sonia Borodzicz-Jazdzyk ◽  
Karolina Rybak ◽  
Maciej Kubik ◽  
Agnieszka Cudnoch-Jedrzejewska

Myocardial infarction is one of the major causes of mortality worldwide and is a main cause of heart failure. This disease appears as a final point of atherosclerotic plaque progression, destabilization, and rupture. As a consequence of cardiomyocytes death during the infarction, the heart undergoes unfavorable cardiac remodeling, which results in its failure. Therefore, therapies aimed to limit the processes of atherosclerotic plaque progression, cardiac damage during the infarction, and subsequent remodeling are urgently warranted. A hopeful therapeutic option for the future medicine is targeting and regulating non-coding RNA (ncRNA), like microRNA, circular RNA (circRNA), or long non-coding RNA (lncRNA). In this review, the approaches targeted at ncRNAs participating in the aforementioned pathophysiological processes involved in myocardial infarction and their outcomes in preclinical studies have been concisely presented.


Sign in / Sign up

Export Citation Format

Share Document