microenvironmental factors
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 64)

H-INDEX

24
(FIVE YEARS 6)

2022 ◽  
Vol 219 (2) ◽  
Author(s):  
Ewelina Krzywinska ◽  
Michal Sobecki ◽  
Shunmugam Nagarajan ◽  
Julian Zacharjasz ◽  
Murtaza M. Tambuwala ◽  
...  

Gut innate lymphoid cells (ILCs) show remarkable phenotypic diversity, yet microenvironmental factors that drive this plasticity are incompletely understood. The balance between NKp46+, IL-22–producing, group 3 ILCs (ILC3s) and interferon (IFN)-γ–producing group 1 ILCs (ILC1s) contributes to gut homeostasis. The gut mucosa is characterized by physiological hypoxia, and adaptation to low oxygen is mediated by hypoxia-inducible transcription factors (HIFs). However, the impact of HIFs on ILC phenotype and gut homeostasis is not well understood. Mice lacking the HIF-1α isoform in NKp46+ ILCs show a decrease in IFN-γ–expressing, T-bet+, NKp46+ ILC1s and a concomitant increase in IL-22–expressing, RORγt+, NKp46+ ILC3s in the gut mucosa. Single-cell RNA sequencing revealed HIF-1α as a driver of ILC phenotypes, where HIF-1α promotes the ILC1 phenotype by direct up-regulation of T-bet. Loss of HIF-1α in NKp46+ cells prevents ILC3-to-ILC1 conversion, increases the expression of IL-22–inducible genes, and confers protection against intestinal damage. Taken together, our results suggest that HIF-1α shapes the ILC phenotype in the gut.


Author(s):  
Suyeong Seo ◽  
Ji Eun Lee ◽  
Kangwon Lee ◽  
Hong Nam Kim

Nanoparticles, such as dust or fine particles produced from diverse sources, are regarded as hazardous materials to human organs, and the interest in understanding their biological mechanisms and evaluating the...


2021 ◽  
Author(s):  
Yogesh Goyal ◽  
Ian P. Dardani ◽  
Gianna T. Busch ◽  
Benjamin Emert ◽  
Dylan Fingerman ◽  
...  

Even amongst genetically identical cancer cells, therapy resistance often only emerges from a very small subset of those cells. Much effort has gone into uncovering the molecular differences in rare individual cells in the initial population that may allow certain cells to become therapy resistant; however, comparatively little is known about variability in the resistant outcomes themselves. Here, we develop and apply FateMap, a framework that combines DNA barcoding with single-cell RNA sequencing to reveal the fates of hundreds of thousands of clones exposed to anti-cancer therapies. We show that resistant clones emerging from single-cell-derived cancer cells adopt molecularly, morphologically, and functionally distinct fate types. These different resistant types are largely predetermined by molecular differences between cells before addition of drug and not by extrinsic cell-specific microenvironmental factors. Changes in dose and kind of drug can, however, switch the resistant fate type of an initial cell, even resulting in the generation and elimination of certain fate types. Diversity in resistant fates was observed across several single-cell-derived cancer cell lines and types treated with a variety of drugs. Cell fate diversity as a result of variability in intrinsic cell states may be a generic feature of response to external cues.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6100
Author(s):  
Tiziana Servidei ◽  
Donatella Lucchetti ◽  
Pierluigi Navarra ◽  
Alessandro Sgambato ◽  
Riccardo Riccardi ◽  
...  

Intra-tumoral heterogeneity (ITH) is a complex multifaceted phenomenon that posits major challenges for the clinical management of cancer patients. Genetic, epigenetic, and microenvironmental factors are concurrent drivers of diversity among the distinct populations of cancer cells. ITH may also be installed by cancer stem cells (CSCs), that foster unidirectional hierarchy of cellular phenotypes or, alternatively, shift dynamically between distinct cellular states. Ependymoma (EPN), a molecularly heterogeneous group of tumors, shows a specific spatiotemporal distribution that suggests a link between ependymomagenesis and alterations of the biological processes involved in embryonic brain development. In children, EPN most often arises intra-cranially and is associated with an adverse outcome. Emerging evidence shows that EPN displays large intra-patient heterogeneity. In this review, after touching on EPN inter-tumoral heterogeneity, we focus on the sources of ITH in pediatric intra-cranial EPN in the framework of the CSC paradigm. We also examine how single-cell technology has shed new light on the complexity and developmental origins of EPN and the potential impact that this understanding may have on the therapeutic strategies against this deadly pediatric malignancy.


2021 ◽  
Author(s):  
J. Roberto Romero-Arias ◽  
Carlos A. González-Castro ◽  
Guillermo Ramírez-Santiago

ABSTRACTWe analyzed a quantitative model that describes the epigenetic dynamics during the growth and evolution of an avascular tumor. A gene regulatory network (GRN) formed by a set of ten genes that are believed to play an important role in breast cancer development was kinetically coupled to the microenvironmental agents: glucose, estrogens and oxygen. The dynamics of spontaneous mutations was described by a Yule-Furry master equation whose solution represents the probability that a given cell in the tissue undergoes a certain number of mutations at a given time. We assumed that mutations rate is modified by nutrients spatial gradients. The tumor mass was grown by means of a cellular automata supplemented with a set of reaction diffusion equations that described the transport of the microenvironmental agents. By analyzing the epigenetic states space described by the GRN dynamics, we found three attractors that were identified with the cellular epigenetic states: normal, precancer and cancer. For two-dimensional (2D) and three-dimensional (3D) tumors we calculated the spatial distributions of the following quantities: (i) number of mutations, (ii) mutations of each gene and, (iii) phenotypes. Using estrogens as the principal microenvironmental agent that regulates cells proliferation process, we obtained the tumor shapes for different values of the estrogen consumption and supply rates. It was found that he majority of mutations occurred in cells that were located close to the 2D tumor perimeter or close to the 3D tumor surface. Also It was found that the occurrence of different phenotypes in the tumor are controlled by the levels of estrogen concentration since they can change the individual cell threshold and gene expression levels. All the results were consistently observed for 2D and 3D tumors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lee Curtin ◽  
Paula Whitmire ◽  
Haylye White ◽  
Kamila M. Bond ◽  
Maciej M. Mrugala ◽  
...  

AbstractLacunarity, a quantitative morphological measure of how shapes fill space, and fractal dimension, a morphological measure of the complexity of pixel arrangement, have shown relationships with outcome across a variety of cancers. However, the application of these metrics to glioblastoma (GBM), a very aggressive primary brain tumor, has not been fully explored. In this project, we computed lacunarity and fractal dimension values for GBM-induced abnormalities on clinically standard magnetic resonance imaging (MRI). In our patient cohort (n = 402), we connect these morphological metrics calculated on pretreatment MRI with the survival of patients with GBM. We calculated lacunarity and fractal dimension on necrotic regions (n = 390), all abnormalities present on T1Gd MRI (n = 402), and abnormalities present on T2/FLAIR MRI (n = 257). We also explored the relationship between these metrics and age at diagnosis, as well as abnormality volume. We found statistically significant relationships to outcome for all three imaging regions that we tested, with the shape of T2/FLAIR abnormalities that are typically associated with edema showing the strongest relationship with overall survival. This link between morphological and survival metrics could be driven by underlying biological phenomena, tumor location or microenvironmental factors that should be further explored.


2021 ◽  
Vol 11 ◽  
Author(s):  
Limeng Cai ◽  
Minfeng Ying ◽  
Hao Wu

Metabolic reprogramming is one of the emerging hallmarks of cancer and is driven by both the oncogenic mutations and challenging microenvironment. To satisfy the demands of energy and biomass for rapid proliferation, the metabolism of various nutrients in tumor cells undergoes important changes, among which the aberrant lipid metabolism has gained increasing attention in facilitating tumor development and metastasis in the past few years. Obstacles emerged in the aspect of application of targeting lipid metabolism for tumor therapy, due to lacking of comprehensive understanding on its regulating mechanism. Tumor cells closely interact with stromal niche, which highly contributes to metabolic rewiring of critical nutrients in cancer cells. This fact makes the impact of microenvironment on tumor lipid metabolism a topic of renewed interest. Abundant evidence has shown that many factors existing in the tumor microenvironment can rewire multiple signaling pathways and proteins involved in lipid metabolic pathways of cancer cells. Hence in this review, we summarized the recent progress on the understanding of microenvironmental factors regulating tumor lipid metabolism, and discuss the potential of modulating lipid metabolism as an anticancer approach.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chrysi Galigalidou ◽  
Laura Zaragoza-Infante ◽  
Anastasia Iatrou ◽  
Anastasia Chatzidimitriou ◽  
Kostas Stamatopoulos ◽  
...  

The term monoclonal B-cell lymphocytosis (MBL) describes the presence of a clonal B cell population with a count of less than 5 × 109/L and no symptoms or signs of disease. Based on the B cell count, MBL is further classified into 2 distinct subtypes: ‘low-count’ and ‘high-count’ MBL. High-count MBL shares a series of biological and clinical features with chronic lymphocytic leukemia (CLL), at least of the indolent type, and evolves to CLL requiring treatment at a rate of 1-2% per year, whereas ‘low-count’ MBL seems to be distinct, likely representing an immunological rather than a pre-malignant condition. That notwithstanding, both subtypes of MBL can carry ‘CLL-specific’ genomic aberrations such as cytogenetic abnormalities and gene mutations, yet to a much lesser extent compared to CLL. These findings suggest that such aberrations are mostly relevant for disease progression rather than disease onset, indirectly pointing to microenvironmental drive as a key contributor to the emergence of MBL. Understanding microenvironmental interactions is therefore anticipated to elucidate MBL ontogeny and, most importantly, the relationship between MBL and CLL.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022016
Author(s):  
Zizheng Ge ◽  
Wentao Liu

Abstract The balance of microenvironmental factors (including temperature, pH, ROS species, etc.) plays a crucial role in maintaining normal living organisms’ normal physiological activities and physiological functions. Therefore, armed with the unique superiorities of high spatial resolution, non-invasion, high sensitivity, real-time monitoring, and simple operation, luminescent imaging technology has been widely used in real-time and accurate monitoring of microenvironmental factors in these organisms to prevent, diagnose and treat related diseases in time. However, due to its optical imaging characteristics, it is also faced with such interference factors as relatively shallow imaging penetration depth, background fluorescence (biological autofluorescence) interference in a complex environment, uncertain probe concentration, and unstable laser power in the imaging process, which are not related to the analyte. As for the problems in imaging, such as the uncertainty of probe concentration and the fluctuation of instrument laser power, the ratio detection, and imaging technology with self-calibration function can effectively avoid these problems. As for background fluorescence interference in imaging, probes with long-life emission can be used in imaging. The long-life luminescence of probes from background fluorescence can be recognized by time-resolved luminescence imaging technology to reduce its impact. This paper briefly introduces and summarizes the relative research of ratio detection and imaging technology and time-resolved luminescence imaging technology.


Author(s):  
Luke W. Thomas ◽  
Margaret Ashcroft

Mitochondria are key organelles in eukaryotic evolution that perform crucial roles as metabolic and cellular signaling hubs. Mitochondrial function and dysfunction are associated with a range of diseases, including cancer. Mitochondria support cancer cell proliferation through biosynthetic reactions and their role in signaling, and can also promote tumorigenesis via processes such as the production of reactive oxygen species (ROS). The advent of (nuclear) genome-wide CRISPR-Cas9 deletion screens has provided gene-level resolution of the requirement of nuclear-encoded mitochondrial genes (NEMGs) for cancer cell viability (essentiality). More recently, it has become apparent that the essentiality of NEMGs is highly dependent on the cancer cell context. In particular, key tumor microenvironmental factors such as hypoxia, and changes in nutrient (e.g., glucose) availability, significantly influence the essentiality of NEMGs. In this mini-review we will discuss recent advances in our understanding of the contribution of NEMGs to cancer from CRISPR-Cas9 deletion screens, and discuss emerging concepts surrounding the context-dependent nature of mitochondrial gene essentiality.


Sign in / Sign up

Export Citation Format

Share Document