scholarly journals Strong ‘functional’ divergence of tropical reef fish assemblages along the global diversity gradient

2020 ◽  
Author(s):  
V Parravicini ◽  
MG Bender ◽  
S Villéger ◽  
F Leprieur ◽  
L Pellissier ◽  
...  

AbstractCoral reefs are experiencing declines due to climate change and local human impacts. While at local scale biodiversity loss induces shifts in community structure, previous biogeographical analyses recorded consistent taxonomic structure of fish communities across global coral reefs. This suggest that regional communities represent a random subset of the global species and traits pool, whatever their species richness. Using distributional data on 3,586 fish species and latest advances in species distribution models we show that the global distribution of reef fishes is influenced by two major traits (body size and diet) and produces a strong divergence in the trait structure of assemblages across the biodiversity gradient. This divergence is best explained by the isolation of reefs during past unfavorable climatic conditions and highlights the risk of a global community re-organization if the ongoing climate-induced reef fragmentation is not halted.

2021 ◽  
Vol 288 (1961) ◽  
Author(s):  
V. Parravicini ◽  
M. G. Bender ◽  
S. Villéger ◽  
F. Leprieur ◽  
L. Pellissier ◽  
...  

Coral reefs are experiencing declines due to climate change and local human impacts. While at a local scale these impacts induce biodiversity loss and shifts in community structure, previous biogeographical analyses recorded consistent taxonomic structure of fish communities across global coral reefs. This suggests that regional communities represent a random subset of the global species and traits pool, whatever their species richness. Using distributional data on 3586 fish species and latest advances in species distribution models, we show marked gradients in the prevalence of size classes and diet categories across the biodiversity gradient. This divergence in trait structure is best explained by reef isolation during past unfavourable climatic conditions, with large and piscivore fishes better represented in isolated areas. These results suggest the risk of a global community re-organization if the ongoing climate-induced reef fragmentation is not halted.


2020 ◽  
Vol 287 (1921) ◽  
pp. 20192214 ◽  
Author(s):  
Laura E. Richardson ◽  
Nicholas A. J. Graham ◽  
Andrew S. Hoey

Rapid and unprecedented ecological change threatens the functioning and stability of ecosystems. On coral reefs, global climate change and local stressors are reducing and reorganizing habitat-forming corals and associated species, with largely unknown implications for critical ecosystem functions such as herbivory. Herbivory mediates coral–algal competition, thereby facilitating ecosystem recovery following disturbance such as coral bleaching events or large storms. However, relationships between coral species composition, the distribution of herbivorous fishes and the delivery of their functional impact are not well understood. Here, we investigate how herbivorous fish assemblages and delivery of two distinct herbivory processes, grazing and browsing, differ among three taxonomically distinct, replicated coral habitats. While grazing on algal turf assemblages was insensitive to different coral configurations, browsing on the macroalga Laurencia cf. obtusa varied considerably among habitats, suggesting that different mechanisms may shape these processes. Variation in browsing among habitats was best predicted by the composition and structural complexity of benthic assemblages (in particular the cover and composition of corals, but not macroalgal cover), and was poorly reflected by visual estimates of browser biomass. Surprisingly, the lowest browsing rates were recorded in the most structurally complex habitat, with the greatest cover of coral (branching Porites habitat). While the mechanism for the variation in browsing is not clear, it may be related to scale-dependent effects of habitat structure on visual occlusion inhibiting foraging activity by browsing fishes, or the relative availability of alternate dietary resources. Our results suggest that maintained functionality may vary among distinct and emerging coral reef configurations due to ecological interactions between reef fishes and their environment determining habitat selection.


2019 ◽  
Vol 286 (1897) ◽  
pp. 20182672 ◽  
Author(s):  
Alexandre C. Siqueira ◽  
David R. Bellwood ◽  
Peter F. Cowman

Herbivory by fishes has been identified as a key ecological process shaping coral reefs through time. Although taxonomically limited, herbivorous reef fishes display a wide range of traits, which results in varied ecosystem functions on reefs around the world. Yet, we understand little about how these trait combinations and functions in ecosystems changed through time and across biogeographic realms. Here, we used fossils and phylogenies in a functional ecological framework to reveal temporal changes in nominally herbivorous fish assemblages among oceanic basins in both trait space and lineage richness among functions. We show that the trait space occupied by extant herbivorous fishes in the Indo-Pacific resulted from an expansion of traits from the ancestral Tethyan assemblages. By contrast, trait space in the Atlantic is the result of lineage turnover, with relatively recent colonization by lineages that arose in the east Tethys/Indo-Pacific. From an ecosystem function perspective, the Atlantic supports a depauperate fauna, with few extant herbivorous reef fish lineages performing each function. Indo-Pacific fishes support both more functions and more lineages within each function, with a marked Miocene to Pleistocene expansion. These disparities highlight the importance of history in explaining global variation in fish functional composition on coral reefs.


2016 ◽  
Vol 283 (1843) ◽  
pp. 20161716 ◽  
Author(s):  
Adel Heenan ◽  
Andrew S. Hoey ◽  
Gareth J. Williams ◽  
Ivor D. Williams

Humans are an increasingly dominant driver of Earth's biological communities, but differentiating human impacts from natural drivers of ecosystem state is crucial. Herbivorous fish play a key role in maintaining coral dominance on coral reefs, and are widely affected by human activities, principally fishing. We assess the relative importance of human and biophysical (habitat and oceanographic) drivers on the biomass of five herbivorous functional groups among 33 islands in the central and western Pacific Ocean. Human impacts were clear for some, but not all, herbivore groups. Biomass of browsers, large excavators, and of all herbivores combined declined rapidly with increasing human population density, whereas grazers, scrapers, and detritivores displayed no relationship. Sea-surface temperature had significant but opposing effects on the biomass of detritivores (positive) and browsers (negative). Similarly, the biomass of scrapers, grazers, and detritivores correlated with habitat structural complexity; however, relationships were group specific. Finally, the biomass of browsers and large excavators was related to island geomorphology, both peaking on low-lying islands and atolls. The substantial variability in herbivore populations explained by natural biophysical drivers highlights the need for locally appropriate management targets on coral reefs.


2015 ◽  
Vol 61 (1) ◽  
pp. 132-145 ◽  
Author(s):  
Zoe T. Richards ◽  
Jean-Paul A. Hobbs

Abstract Hybridisation was traditionally considered rare on coral reefs. However, a rapid increase in hybrid studies over the last 20 years has revealed that hybridisation on coral reefs is common and widespread. In this review, we summarise the growing body of evidence arising from studies on stony corals and reef fishes to verify the occurrence of hybridisation, and we examine the influence hybridisation has had on the enormous level of biodiversity present on coral reefs. We discuss the challenges of distinguishing hybridisation from alternative hypotheses (e.g. incomplete lineage sorting). This review also explores the evolutionary consequences of hybridisation, which range from increasing genetic diversity and the production of novel lineages that may outperform the parent species, to reverse speciation and extinction by genetic swamping. Instances of hybridisation can be natural or occur as a result of human impacts (e.g. habitat degradation) and distinguishing between these two very different causal mechanisms is important for management. Currently, the legislative status of hybrids is unclear and hybrids are rarely protected in conservation programs. Failing to adequately manage hybridisation and hybrid lineages may lead to potential losses of evolutionary novelty, declines in phylogenetic diversity or species extinctions. To conserve existing coral reef biodiversity, and the processes that generate biodiversity, conservation policies must be re-defined and instances of hybridisation must be assessed and managed on a case-by-case basis.


2016 ◽  
Vol 283 (1823) ◽  
pp. 20152332 ◽  
Author(s):  
Tom C. L. Bridge ◽  
Osmar J. Luiz ◽  
Richard R. Coleman ◽  
Corinne N. Kane ◽  
Randall K. Kosaki

Ecological communities that occupy similar habitats may exhibit functional convergence despite significant geographical distances and taxonomic dissimilarity. On coral reefs, steep gradients in key environmental variables (e.g. light and wave energy) restrict some species to shallow depths. We show that depth-generalist reef fishes are correlated with two species-level traits: caudal fin aspect ratio and diet. Fishes with high aspect ratio (lunate) caudal fins produce weaker vortices in the water column while swimming, and we propose that ‘silent swimming’ reduces the likelihood of detection and provides an advantage on deeper reefs with lower light irradiance and water motion. Significant differences in depth preference among trophic guilds reflect variations in the availability of different food sources along a depth gradient. The significance of these two traits across three geographically and taxonomically distinct assemblages suggests that deep-water habitats exert a strong environmental filter on coral reef-fish assemblages.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9246
Author(s):  
Kostantinos A. Stamoulis ◽  
Jade M.S. Delevaux ◽  
Ivor D. Williams ◽  
Alan M. Friedlander ◽  
Jake Reichard ◽  
...  

Species distribution models (SDMs) are used to interpret and map fish distributions based on habitat variables and other drivers. Reef fish avoidance behavior has been shown to vary in the presence of divers and is primarily driven by spearfishing pressure. Diver avoidance behavior or fish wariness may spatially influence counts and other descriptive measures of fish assemblages. Because fish assemblage metrics are response variables for SDMs, measures of fish wariness may be useful as predictors in SDMs of fishes targeted by spearfishing. We used a diver operated stereo-video system to conduct fish surveys and record minimum approach distance (MAD) of targeted reef fishes inside and outside of two marine reserves on the island of Oʻahu in the main Hawaiian Islands. By comparing MAD between sites and management types we tested the assumption that it provides a proxy for fish wariness related to spearfishing pressure. We then compared the accuracy of SDMs which included MAD as a predictor with SDMs that did not. Individual measures of MAD differed between sites though not management types. When included as a predictor, MAD averaged at the transect level greatly improved the accuracy of SDMs of targeted fish biomass.


2020 ◽  
Vol 649 ◽  
pp. 125-140
Author(s):  
DS Goldsworthy ◽  
BJ Saunders ◽  
JRC Parker ◽  
ES Harvey

Bioregional categorisation of the Australian marine environment is essential to conserve and manage entire ecosystems, including the biota and associated habitats. It is important that these regions are optimally positioned to effectively plan for the protection of distinct assemblages. Recent climatic variation and changes to the marine environment in Southwest Australia (SWA) have resulted in shifts in species ranges and changes to the composition of marine assemblages. The goal of this study was to determine if the current bioregionalisation of SWA accurately represents the present distribution of shallow-water reef fishes across 2000 km of its subtropical and temperate coastline. Data was collected in 2015 using diver-operated underwater stereo-video surveys from 7 regions between Port Gregory (north of Geraldton) to the east of Esperance. This study indicated that (1) the shallow-water reef fish of SWA formed 4 distinct assemblages along the coast: one Midwestern, one Central and 2 Southern Assemblages; (2) differences between these fish assemblages were primarily driven by sea surface temperature, Ecklonia radiata cover, non-E. radiata (canopy) cover, understorey algae cover, reef type and reef height; and (3) each of the 4 assemblages were characterised by a high number of short-range Australian and Western Australian endemic species. The findings from this study suggest that 4, rather than the existing 3 bioregions would more effectively capture the shallow-water reef fish assemblage patterns, with boundaries having shifted southwards likely associated with ocean warming.


2018 ◽  
Vol 373 (1761) ◽  
pp. 20170446 ◽  
Author(s):  
Scott Jarvie ◽  
Jens-Christian Svenning

Trophic rewilding, the (re)introduction of species to promote self-regulating biodiverse ecosystems, is a future-oriented approach to ecological restoration. In the twenty-first century and beyond, human-mediated climate change looms as a major threat to global biodiversity and ecosystem function. A critical aspect in planning trophic rewilding projects is the selection of suitable sites that match the needs of the focal species under both current and future climates. Species distribution models (SDMs) are currently the main tools to derive spatially explicit predictions of environmental suitability for species, but the extent of their adoption for trophic rewilding projects has been limited. Here, we provide an overview of applications of SDMs to trophic rewilding projects, outline methodological choices and issues, and provide a synthesis and outlook. We then predict the potential distribution of 17 large-bodied taxa proposed as trophic rewilding candidates and which represent different continents and habitats. We identified widespread climatic suitability for these species in the discussed (re)introduction regions under current climates. Climatic conditions generally remain suitable in the future, although some species will experience reduced suitability in parts of these regions. We conclude that climate change is not a major barrier to trophic rewilding as currently discussed in the literature.This article is part of the theme issue ‘Trophic rewilding: consequences for ecosystems under global change’.


Sign in / Sign up

Export Citation Format

Share Document