scholarly journals Mining the potential of VRS1-5 gene to raise barley grain yield

2020 ◽  
Author(s):  
Liping Shen ◽  
Yangyang Liu ◽  
Zhiwen Sun ◽  
Ziying Wang ◽  
Lili Zhang ◽  
...  

AbstractVRS1-5 genes determine spike row types during the early stages of spike development in barley (Hordeum vulgare), yet their functions for the determination of grain yield during the late stages of spike development are largely unknown. To assess the role of VRS1-5 genes in determining grain yield components, we sequenced VRS1-5 genes from 894 worldwide barley accessions and measured 19 spike morphology traits in four environments. Single nucleotide polymorphism SNP markers and gene marker-based haplotypes for VRS1-5 displayed close associations with spike morphology traits. We further developed a spatiote-temporal transcriptome atlas (255 samples) at 17 stages and five positions along the spike, that linked spike morphology to spikelet development and expression patterns of VRS1-5 genes. Phenotypic measurements demonstrated that mutations in VRS1-5 suppress the initiation of spikelet primordia and, trigger spikelet abortion by increasing cytokinin content and improving sensitivity of spikelet primordia to cytokinin. Our integrated results illustrate how breeding can globally alter spike morphology through diversity at the VRS1-5 genes, which show great potential in increasing barley grain yield.

Genetics ◽  
1997 ◽  
Vol 145 (2) ◽  
pp. 453-465 ◽  
Author(s):  
Zhikang Li ◽  
Shannon R M Pinson ◽  
William D Park ◽  
Andrew H Paterson ◽  
James W Stansel

The genetic basis for three grain yield components of rice, 1000 kernel weight (KW), grain number per panicle (GN), and grain weight per panicle (GWP), was investigated using restriction fragment length polymorphism markers and F4 progeny testing from a cross between rice subspecies japonica (cultivar Lemont from USA) and indica (cv. Teqing from China). Following identification of 19 QTL affecting these traits, we investigated the role of epistasis in genetic control of these phenotypes. Among 63 markers distributed throughout the genome that appeared to be involved in 79 highly significant (P < 0.001) interactions, most (46 or 73%) did not appear to have “main” effects on the relevant traits, but influenced the trait(s) predominantly through interactions. These results indicate that epistasis is an important genetic basis for complex traits such as yield components, especially traits of low heritability such as GN and GWP. The identification of epistatic loci is an important step toward resolution of discrepancies between quantitative trait loci mapping and classical genetic dogma, contributes to better understanding of the persistence of quantitative genetic variation in populations, and impels reconsideration of optimal mapping methodology and marker-assisted breeding strategies for improvement of complex traits.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jiazi Zhang ◽  
Hongchun Xiong ◽  
Huijun Guo ◽  
Yuting Li ◽  
Xiaomei Xie ◽  
...  

The wheat AP2 family gene Q controls domestication traits, including spike morphology and threshability, which are critical for the widespread cultivation and yield improvement of wheat. Although many studies have investigated the molecular mechanisms of the Q gene, its direct target genes, especially those controlling spike morphology, are not clear, and its regulatory pathways are not well established. In this study, we conducted gene mapping of a wheat speltoid spike mutant and found that a new allele of the Q gene with protein truncation played a role in spike morphology variation in the mutant. Dynamic expression levels of the Q gene throughout the spike development process suggested that the transcript abundances of the mutant were decreased at the W6 and W7 scales compared to those of the WT. We identified several mutation sites on the Q gene and showed that mutations in different domains resulted in distinct phenotypes. In addition, we found that the Q gene produced three transcripts via alternative splicing and that they exhibited differential expression patterns in nodes, internodes, flag leaves, and spikes. Finally, we identified several target genes directly downstream of Q, including TaGRF1-2D and TaMGD-6B, and proposed a possible regulatory network. This study uncovered the target genes of Q, and the results can help to clarify the mechanism of wheat spike morphology and thereby improve wheat grain yield.


2014 ◽  
Vol 7 (1) ◽  
pp. 19-33 ◽  
Author(s):  
D. Ruswandi ◽  
J. Supriatna ◽  
A.T. Makkulawu ◽  
B. Waluyo ◽  
H. Marta ◽  
...  

2018 ◽  
Vol 97 (7) ◽  
pp. 828-834 ◽  
Author(s):  
L. Li ◽  
Q. Tang ◽  
H.-J.E. Kwon ◽  
Z. Wu ◽  
E.-J. Kim ◽  
...  

Species-specific cusp patterns result from the iterative formation of enamel knots, the epithelial signaling centers, at the future cusp positions. The expressions of fibroblast growth factors (FGFs), especially Fgf4, in the secondary enamel knots in the areas of the future cusp tips are generally used to manifest the appearance of species-specific tooth shapes. However, the mechanism underlying the predictive role of FGFs in species-specific cusp patterns remains obscure. Here, we demonstrated that gerbils, which have a lophodont pattern, exhibit a striped expression pattern of Fgf4, whereas mice, which have a bunodont pattern, have a spotted expression pattern, and these observations verify the predictive role of Fgf4 in species-specific cusp patterns. By manipulating FGFs’ signaling in the inner dental epithelium of gerbils, we provide evidence for the intracellular participation of FGF signaling, specifically FGF4 and FGF20, in Rac1- and RhoA-regulated cellular geometry remolding during the determination of different cusp patterns. Our study presents a novel explanation of how different FGF expression patterns produce different cusp patterns and implies that a conserved intracellular FGF-GTPase signaling module might represent an underlying developmental basis for evolutionary changes in cusp patterns.


2002 ◽  
Vol 169 (8) ◽  
pp. 4253-4261 ◽  
Author(s):  
Simeon Santourlidis ◽  
Hans-Ingo Trompeter ◽  
Sandra Weinhold ◽  
Britta Eisermann ◽  
Klaus L. Meyer ◽  
...  

1995 ◽  
Vol 73 (9-10) ◽  
pp. 723-732 ◽  
Author(s):  
Lynn A. Megeney ◽  
Michael A. Rudnicki

The myogenic regulatory factors (MRFs) form a family of basic helix–loop–helix transcription factors consisting of Myf-5, MyoD, myogenin, and MRF4. The MRFs play key regulatory roles in the development of skeletal muscle during embryogenesis. Sequence homology, expression patterns, and genetargeting experiments have revealed a two-tiered subclassification within the MRF family. Myf-5 and MyoD are more homologous to one another than to the others, are expressed in myoblasts before differentiation, and are required for the determination or survival of muscle progenitor cells. By contrast, myogenin and MRF4 are more homologous to one another than to the others and are expressed upon differentiation, and myogenin is required in vivo as a differentiation factor while the role of MRF4 remains unclear. On this basis, MyoD and Myf-5 are classified as primary MRFs, as they are required for the determination of myoblasts, and myogenin and MRF4 are classified as secondary MRFs, as they likely function during terminal differentiation.Key words: MyoD, Myf-5, myogenin, MRF4, skeletal muscle.


2010 ◽  
Vol 56 (2) ◽  
pp. 69-73
Author(s):  
Luděk HŘIVNA ◽  
Gregor TOMÁŠ ◽  
Viera ŠOTTNÍKOVÁ ◽  
Radim CERKAL ◽  
Pavel RYANT ◽  
...  

2019 ◽  
Author(s):  
Chengxia Li ◽  
Huiqiong Lin ◽  
Andrew Chen ◽  
Meiyee Lau ◽  
Judy Jernstedt ◽  
...  

ABSTRACTThe spikelet is the basic unit of the grass inflorescence. In this study, we show that wheat MADS-box genes VRN1, FUL2 and FUL3 play critical and redundant roles in spikelet and spike development, and also affect flowering time and plant height. In the vrn1ful2ful3-null triple mutant, the inflorescence meristem formed a normal double-ridge structure, but then the lateral meristems generated vegetative tillers subtended by leaves instead of spikelets. These results suggest an essential role of these three genes in the determination of spikelet meristem identity and the suppression of the lower ridge. Inflorescence meristems of vrn1ful2ful3-null and vrn1ful2-null remained indeterminate and single vrn1-null and ful2-null mutants showed delayed formation of the terminal spikelet and increased number of spikelets per spike. Moreover, the ful2-null mutant showed more florets per spikelet, which together with a higher number of spikelets, resulted in a significant increase in the number of grains per spike in the field. Our results suggest that a better understanding of the mechanisms underlying wheat spikelet and spike development can inform future strategies to improve grain yield in wheat.SUMMARY STATEMENTThe wheat MADS-box proteins VRN1, FUL2 and FUL3 play critical and overlapping roles in the development of spikelets, which are the basic unit of all grass inflorescences.


2016 ◽  
Vol 7 ◽  
Author(s):  
Deyong Ren ◽  
Yuchun Rao ◽  
Yujia Leng ◽  
Zizhuang Li ◽  
Qiankun Xu ◽  
...  

1987 ◽  
Vol 26 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. Selvaraj ◽  
M. R. Suresh ◽  
G. McLean ◽  
D. Willans ◽  
C. Turner ◽  
...  

The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both a and ß configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models.


Sign in / Sign up

Export Citation Format

Share Document